• Je něco špatně v tomto záznamu ?

Removable nanocoatings for siRNA polyplexes

L. Kostka, C. Konák, V. Subr, M. Spírková, Y. Addadi, M. Neeman, T. Lammers, K. Ulbrich

. 2011 ; 22 (2) : 169-179. [pub] 20110110

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12027144

To assist in overcoming the inherent instability of nucleic acid-containing polyplexes in physiological solutions, we have here set out to develop removable nanocoatings for modifying the surface of siRNA-based nanoparticles. Here, N-(2-hydroxypropyl)methacrylamide (HPMA) based copolymers containing carbonylthiazolidine-2-thione (TT) reactive groups in their side chains bound via disulfide spacers to the polymeric backbone were synthesized, and these copolymers were used to coat the surface of polyplexes formed by the self-assembly of anti-Luciferase siRNA with the polycations polyethylene imine (PEI) and poly(HPMA)-grafted poly(l-lysine) (GPL). The coating process was monitored by analyzing changes in the weight-average molecular weight (M(w)), the hydrodynamic radius (R(h)), and the zeta-potential (ζ) of the polyplexes, using both static (SLS) and dynamic (DLS) light scattering methods. The outlined methods resulted in the attachment of, on average, 28 polymer molecules to the surface of the polyplexes, forming a ∼5-nm-thick hydrophilic stealth coating. Initial efforts to develop RGD-targeted coated polyplexes are also described. Atomic force microscopy (AFM) showed an angular polyplex structure and confirmed the narrow size distribution of the coated nanoparticles. The stability of the polymer-coated and uncoated polyplexes was evaluated by gel electrophoresis and by turbidity measurements, and it was found that modifying the surface of the siRNA-containing polyplexes substantially improved their stability in physiological solutions. Using polymer-coated GPL-based polyplexes containing anti-Luciferase siRNA, we finally also obtained some initial proof-of-principle for time- and concentration-dependent target-specific gene silencing, suggesting that these systems hold significant potential for further in vitro and in vivo evaluation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12027144
003      
CZ-PrNML
005      
20160418081228.0
007      
ta
008      
120816s2011 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1021/bc100197e $2 doi
035    __
$a (PubMed)21218805
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kostka, Libor $7 xx0232772 $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic. kostka@imc.cas.cz
245    10
$a Removable nanocoatings for siRNA polyplexes / $c L. Kostka, C. Konák, V. Subr, M. Spírková, Y. Addadi, M. Neeman, T. Lammers, K. Ulbrich
520    9_
$a To assist in overcoming the inherent instability of nucleic acid-containing polyplexes in physiological solutions, we have here set out to develop removable nanocoatings for modifying the surface of siRNA-based nanoparticles. Here, N-(2-hydroxypropyl)methacrylamide (HPMA) based copolymers containing carbonylthiazolidine-2-thione (TT) reactive groups in their side chains bound via disulfide spacers to the polymeric backbone were synthesized, and these copolymers were used to coat the surface of polyplexes formed by the self-assembly of anti-Luciferase siRNA with the polycations polyethylene imine (PEI) and poly(HPMA)-grafted poly(l-lysine) (GPL). The coating process was monitored by analyzing changes in the weight-average molecular weight (M(w)), the hydrodynamic radius (R(h)), and the zeta-potential (ζ) of the polyplexes, using both static (SLS) and dynamic (DLS) light scattering methods. The outlined methods resulted in the attachment of, on average, 28 polymer molecules to the surface of the polyplexes, forming a ∼5-nm-thick hydrophilic stealth coating. Initial efforts to develop RGD-targeted coated polyplexes are also described. Atomic force microscopy (AFM) showed an angular polyplex structure and confirmed the narrow size distribution of the coated nanoparticles. The stability of the polymer-coated and uncoated polyplexes was evaluated by gel electrophoresis and by turbidity measurements, and it was found that modifying the surface of the siRNA-containing polyplexes substantially improved their stability in physiological solutions. Using polymer-coated GPL-based polyplexes containing anti-Luciferase siRNA, we finally also obtained some initial proof-of-principle for time- and concentration-dependent target-specific gene silencing, suggesting that these systems hold significant potential for further in vitro and in vivo evaluation.
650    _2
$a disulfidy $x chemie $7 D004220
650    _2
$a molekulární struktura $7 D015394
650    _2
$a nanočástice $x chemie $7 D053758
650    _2
$a polymery $x chemická syntéza $x chemie $7 D011108
650    _2
$a malá interferující RNA $x chemie $7 D034741
650    _2
$a stereoizomerie $7 D013237
650    _2
$a povrchové vlastnosti $7 D013499
650    _2
$a thioketony $x chemie $7 D013871
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Konák, Cestmír $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic
700    1_
$a Šubr, Vladimír, $d 1957- $7 xx0088449 $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic
700    1_
$a Špírková, Milena $7 utb2012725098 $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic
700    1_
$a Addadi, Yoseph $u Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel § Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands $7 gn_A_00001678
700    1_
$a Neeman, Michal $u Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel § Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
700    1_
$a Lammers, Twan $u Department of Experimental Molecular Imaging, RWTH − Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
700    1_
$a Ulbrich, Karel, $d 1947- $7 jo2004259877 $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic
773    0_
$w MED00006454 $t Bioconjugate chemistry $x 1520-4812 $g Roč. 22, č. 2 (2011), s. 169-179
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21218805 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120816 $b ABA008
991    __
$a 20160418081317 $b ABA008
999    __
$a ok $b bmc $g 949186 $s 784490
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 22 $c 2 $d 169-179 $e 20110110 $i 1520-4812 $m Bioconjugate chemistry $n Bioconjug Chem $x MED00006454
LZP    __
$b NLK122 $a Pubmed-20120816/11/02

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace