-
Je něco špatně v tomto záznamu ?
Removable nanocoatings for siRNA polyplexes
L. Kostka, C. Konák, V. Subr, M. Spírková, Y. Addadi, M. Neeman, T. Lammers, K. Ulbrich
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21218805
DOI
10.1021/bc100197e
Knihovny.cz E-zdroje
- MeSH
- disulfidy chemie MeSH
- malá interferující RNA chemie MeSH
- molekulární struktura MeSH
- nanočástice chemie MeSH
- polymery chemická syntéza chemie MeSH
- povrchové vlastnosti MeSH
- stereoizomerie MeSH
- thioketony chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To assist in overcoming the inherent instability of nucleic acid-containing polyplexes in physiological solutions, we have here set out to develop removable nanocoatings for modifying the surface of siRNA-based nanoparticles. Here, N-(2-hydroxypropyl)methacrylamide (HPMA) based copolymers containing carbonylthiazolidine-2-thione (TT) reactive groups in their side chains bound via disulfide spacers to the polymeric backbone were synthesized, and these copolymers were used to coat the surface of polyplexes formed by the self-assembly of anti-Luciferase siRNA with the polycations polyethylene imine (PEI) and poly(HPMA)-grafted poly(l-lysine) (GPL). The coating process was monitored by analyzing changes in the weight-average molecular weight (M(w)), the hydrodynamic radius (R(h)), and the zeta-potential (ζ) of the polyplexes, using both static (SLS) and dynamic (DLS) light scattering methods. The outlined methods resulted in the attachment of, on average, 28 polymer molecules to the surface of the polyplexes, forming a ∼5-nm-thick hydrophilic stealth coating. Initial efforts to develop RGD-targeted coated polyplexes are also described. Atomic force microscopy (AFM) showed an angular polyplex structure and confirmed the narrow size distribution of the coated nanoparticles. The stability of the polymer-coated and uncoated polyplexes was evaluated by gel electrophoresis and by turbidity measurements, and it was found that modifying the surface of the siRNA-containing polyplexes substantially improved their stability in physiological solutions. Using polymer-coated GPL-based polyplexes containing anti-Luciferase siRNA, we finally also obtained some initial proof-of-principle for time- and concentration-dependent target-specific gene silencing, suggesting that these systems hold significant potential for further in vitro and in vivo evaluation.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12027144
- 003
- CZ-PrNML
- 005
- 20160418081228.0
- 007
- ta
- 008
- 120816s2011 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1021/bc100197e $2 doi
- 035 __
- $a (PubMed)21218805
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kostka, Libor $7 xx0232772 $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic. kostka@imc.cas.cz
- 245 10
- $a Removable nanocoatings for siRNA polyplexes / $c L. Kostka, C. Konák, V. Subr, M. Spírková, Y. Addadi, M. Neeman, T. Lammers, K. Ulbrich
- 520 9_
- $a To assist in overcoming the inherent instability of nucleic acid-containing polyplexes in physiological solutions, we have here set out to develop removable nanocoatings for modifying the surface of siRNA-based nanoparticles. Here, N-(2-hydroxypropyl)methacrylamide (HPMA) based copolymers containing carbonylthiazolidine-2-thione (TT) reactive groups in their side chains bound via disulfide spacers to the polymeric backbone were synthesized, and these copolymers were used to coat the surface of polyplexes formed by the self-assembly of anti-Luciferase siRNA with the polycations polyethylene imine (PEI) and poly(HPMA)-grafted poly(l-lysine) (GPL). The coating process was monitored by analyzing changes in the weight-average molecular weight (M(w)), the hydrodynamic radius (R(h)), and the zeta-potential (ζ) of the polyplexes, using both static (SLS) and dynamic (DLS) light scattering methods. The outlined methods resulted in the attachment of, on average, 28 polymer molecules to the surface of the polyplexes, forming a ∼5-nm-thick hydrophilic stealth coating. Initial efforts to develop RGD-targeted coated polyplexes are also described. Atomic force microscopy (AFM) showed an angular polyplex structure and confirmed the narrow size distribution of the coated nanoparticles. The stability of the polymer-coated and uncoated polyplexes was evaluated by gel electrophoresis and by turbidity measurements, and it was found that modifying the surface of the siRNA-containing polyplexes substantially improved their stability in physiological solutions. Using polymer-coated GPL-based polyplexes containing anti-Luciferase siRNA, we finally also obtained some initial proof-of-principle for time- and concentration-dependent target-specific gene silencing, suggesting that these systems hold significant potential for further in vitro and in vivo evaluation.
- 650 _2
- $a disulfidy $x chemie $7 D004220
- 650 _2
- $a molekulární struktura $7 D015394
- 650 _2
- $a nanočástice $x chemie $7 D053758
- 650 _2
- $a polymery $x chemická syntéza $x chemie $7 D011108
- 650 _2
- $a malá interferující RNA $x chemie $7 D034741
- 650 _2
- $a stereoizomerie $7 D013237
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 650 _2
- $a thioketony $x chemie $7 D013871
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Konák, Cestmír $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic
- 700 1_
- $a Šubr, Vladimír, $d 1957- $7 xx0088449 $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic
- 700 1_
- $a Špírková, Milena $7 utb2012725098 $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic
- 700 1_
- $a Addadi, Yoseph $u Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel § Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands $7 gn_A_00001678
- 700 1_
- $a Neeman, Michal $u Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel § Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
- 700 1_
- $a Lammers, Twan $u Department of Experimental Molecular Imaging, RWTH − Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
- 700 1_
- $a Ulbrich, Karel, $d 1947- $7 jo2004259877 $u Institute of Macromolecular Chemistry, v. v. i., Academy of Sciences of the Czech Republic, Heyrovský sq. 2, 162 06, Prague 6, Czech Republic
- 773 0_
- $w MED00006454 $t Bioconjugate chemistry $x 1520-4812 $g Roč. 22, č. 2 (2011), s. 169-179
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21218805 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160418081317 $b ABA008
- 999 __
- $a ok $b bmc $g 949186 $s 784490
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 22 $c 2 $d 169-179 $e 20110110 $i 1520-4812 $m Bioconjugate chemistry $n Bioconjug Chem $x MED00006454
- LZP __
- $b NLK122 $a Pubmed-20120816/11/02