• Je něco špatně v tomto záznamu ?

Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects distribution

A. Komárek, BE. Hansen, EM. Kuiper, HR. van Buuren, E. Lesaffre

. 2010 ; 29 (30) : 3267-3283.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12027198

We have developed a method to longitudinally classify subjects into two or more prognostic groups using longitudinally observed values of markers related to the prognosis. We assume the availability of a training data set where the subjects' allocation into the prognostic group is known. The proposed method proceeds in two steps as described earlier in the literature. First, multivariate linear mixed models are fitted in each prognostic group from the training data set to model the dependence of markers on time and on possibly other covariates. Second, fitted mixed models are used to develop a discrimination rule for future subjects. Our method improves upon existing approaches by relaxing the normality assumption of random effects in the underlying mixed models. Namely, we assume a heteroscedastic multivariate normal mixture for random effects. Inference is performed in the Bayesian framework using the Markov chain Monte Carlo methodology. Software has been written for the proposed method and it is freely available. The methodology is applied to data from the Dutch Primary Biliary Cirrhosis Study.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12027198
003      
CZ-PrNML
005      
20160411100104.0
007      
ta
008      
120816s2010 enk f 000 0#eng||
009      
AR
024    7_
$a 10.1002/sim.3849 $2 doi
035    __
$a (PubMed)21170920
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Komárek, Arnošt $u Faculty of Mathematics and Physics, Department of Probability and Mathematical Statistics, Charles University in Prague, Sokolovská 83, 186 75 Praha 8-Karlín, Czech Republic. arnost.komarek@mff.cuni.cz $7 mzk2008434100
245    10
$a Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects distribution / $c A. Komárek, BE. Hansen, EM. Kuiper, HR. van Buuren, E. Lesaffre
520    9_
$a We have developed a method to longitudinally classify subjects into two or more prognostic groups using longitudinally observed values of markers related to the prognosis. We assume the availability of a training data set where the subjects' allocation into the prognostic group is known. The proposed method proceeds in two steps as described earlier in the literature. First, multivariate linear mixed models are fitted in each prognostic group from the training data set to model the dependence of markers on time and on possibly other covariates. Second, fitted mixed models are used to develop a discrimination rule for future subjects. Our method improves upon existing approaches by relaxing the normality assumption of random effects in the underlying mixed models. Namely, we assume a heteroscedastic multivariate normal mixture for random effects. Inference is performed in the Bayesian framework using the Markov chain Monte Carlo methodology. Software has been written for the proposed method and it is freely available. The methodology is applied to data from the Dutch Primary Biliary Cirrhosis Study.
650    _2
$a biologické markery $x analýza $7 D015415
650    _2
$a cholagoga a choleretika $x terapeutické užití $7 D002756
650    _2
$a počítačová simulace $7 D003198
650    _2
$a interpretace statistických dat $7 D003627
650    _2
$a diskriminační analýza $7 D016002
650    _2
$a progrese nemoci $7 D018450
650    _2
$a lidé $7 D006801
650    _2
$a lineární modely $7 D016014
650    _2
$a biliární cirhóza $x farmakoterapie $7 D008105
650    _2
$a longitudinální studie $7 D008137
650    _2
$a kyselina ursodeoxycholová $x terapeutické užití $7 D014580
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hansen, Bettina E. $u Department of Gastroenterology and Hepatology, Erasmus University Medical Center; Department of Epidemiology and Biostatistics, Erasmus University Medical Center
700    1_
$a Kuiper, Edith M. M. $u Departments of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
700    1_
$a van Buuren, Henk R. $u Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
700    1_
$a Lesaffre, Emmanuel $u Katholieke Universiteit Leuven, Biostatistical Centre, Kapucijnenvoer 35, B-3000 Leuven, Belgium
773    0_
$w MED00004434 $t Statistics in medicine $x 1097-0258 $g Roč. 29, č. 30 (2010), s. 3267-3283
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21170920 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120816 $b ABA008
991    __
$a 20160411095828 $b ABA008
999    __
$a ok $b bmc $g 949240 $s 784544
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2010 $b 29 $c 30 $d 3267-3283 $i 1097-0258 $m Statistics in medicine $n Stat Med $x MED00004434
LZP    __
$b NLK112 $a Pubmed-20120816/11/02

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...