-
Je něco špatně v tomto záznamu ?
Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects distribution
A. Komárek, BE. Hansen, EM. Kuiper, HR. van Buuren, E. Lesaffre
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21170920
DOI
10.1002/sim.3849
Knihovny.cz E-zdroje
- MeSH
- biliární cirhóza farmakoterapie MeSH
- biologické markery analýza MeSH
- cholagoga a choleretika terapeutické užití MeSH
- diskriminační analýza MeSH
- interpretace statistických dat MeSH
- kyselina ursodeoxycholová terapeutické užití MeSH
- lidé MeSH
- lineární modely MeSH
- longitudinální studie MeSH
- počítačová simulace MeSH
- progrese nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We have developed a method to longitudinally classify subjects into two or more prognostic groups using longitudinally observed values of markers related to the prognosis. We assume the availability of a training data set where the subjects' allocation into the prognostic group is known. The proposed method proceeds in two steps as described earlier in the literature. First, multivariate linear mixed models are fitted in each prognostic group from the training data set to model the dependence of markers on time and on possibly other covariates. Second, fitted mixed models are used to develop a discrimination rule for future subjects. Our method improves upon existing approaches by relaxing the normality assumption of random effects in the underlying mixed models. Namely, we assume a heteroscedastic multivariate normal mixture for random effects. Inference is performed in the Bayesian framework using the Markov chain Monte Carlo methodology. Software has been written for the proposed method and it is freely available. The methodology is applied to data from the Dutch Primary Biliary Cirrhosis Study.
Department of Epidemiology and Biostatistics Erasmus University Medical Center
Department of Gastroenterology and Hepatology Erasmus MC Rotterdam The Netherlands
Department of Gastroenterology and Hepatology Erasmus University Medical Center
Katholieke Universiteit Leuven Biostatistical Centre Kapucijnenvoer 35 B 3000 Leuven Belgium
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12027198
- 003
- CZ-PrNML
- 005
- 20160411100104.0
- 007
- ta
- 008
- 120816s2010 enk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1002/sim.3849 $2 doi
- 035 __
- $a (PubMed)21170920
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Komárek, Arnošt $u Faculty of Mathematics and Physics, Department of Probability and Mathematical Statistics, Charles University in Prague, Sokolovská 83, 186 75 Praha 8-Karlín, Czech Republic. arnost.komarek@mff.cuni.cz $7 mzk2008434100
- 245 10
- $a Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects distribution / $c A. Komárek, BE. Hansen, EM. Kuiper, HR. van Buuren, E. Lesaffre
- 520 9_
- $a We have developed a method to longitudinally classify subjects into two or more prognostic groups using longitudinally observed values of markers related to the prognosis. We assume the availability of a training data set where the subjects' allocation into the prognostic group is known. The proposed method proceeds in two steps as described earlier in the literature. First, multivariate linear mixed models are fitted in each prognostic group from the training data set to model the dependence of markers on time and on possibly other covariates. Second, fitted mixed models are used to develop a discrimination rule for future subjects. Our method improves upon existing approaches by relaxing the normality assumption of random effects in the underlying mixed models. Namely, we assume a heteroscedastic multivariate normal mixture for random effects. Inference is performed in the Bayesian framework using the Markov chain Monte Carlo methodology. Software has been written for the proposed method and it is freely available. The methodology is applied to data from the Dutch Primary Biliary Cirrhosis Study.
- 650 _2
- $a biologické markery $x analýza $7 D015415
- 650 _2
- $a cholagoga a choleretika $x terapeutické užití $7 D002756
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a interpretace statistických dat $7 D003627
- 650 _2
- $a diskriminační analýza $7 D016002
- 650 _2
- $a progrese nemoci $7 D018450
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lineární modely $7 D016014
- 650 _2
- $a biliární cirhóza $x farmakoterapie $7 D008105
- 650 _2
- $a longitudinální studie $7 D008137
- 650 _2
- $a kyselina ursodeoxycholová $x terapeutické užití $7 D014580
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hansen, Bettina E. $u Department of Gastroenterology and Hepatology, Erasmus University Medical Center; Department of Epidemiology and Biostatistics, Erasmus University Medical Center
- 700 1_
- $a Kuiper, Edith M. M. $u Departments of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
- 700 1_
- $a van Buuren, Henk R. $u Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
- 700 1_
- $a Lesaffre, Emmanuel $u Katholieke Universiteit Leuven, Biostatistical Centre, Kapucijnenvoer 35, B-3000 Leuven, Belgium
- 773 0_
- $w MED00004434 $t Statistics in medicine $x 1097-0258 $g Roč. 29, č. 30 (2010), s. 3267-3283
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21170920 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160411095828 $b ABA008
- 999 __
- $a ok $b bmc $g 949240 $s 784544
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 29 $c 30 $d 3267-3283 $i 1097-0258 $m Statistics in medicine $n Stat Med $x MED00004434
- LZP __
- $b NLK112 $a Pubmed-20120816/11/02