-
Je něco špatně v tomto záznamu ?
Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis
L. Kořený, M. Oborník,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu dopisy, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2009
Free Medical Journals
od 2009
PubMed Central
od 2009
Europe PubMed Central
od 2009
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Oxford Journals Open Access Collection
od 2009
ROAD: Directory of Open Access Scholarly Resources
od 2009
PubMed
21444293
DOI
10.1093/gbe/evr029
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- biosyntetické dráhy MeSH
- Chlorophyta fyziologie MeSH
- Euglena gracilis klasifikace genetika fyziologie MeSH
- fylogeneze MeSH
- molekulární sekvence - údaje MeSH
- plastidy genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- symbióza MeSH
- tetrapyrroly biosyntéza MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
Genes encoding enzymes of the tetrapyrrole biosynthetic pathway were searched within Euglena gracilis EST databases and 454 genome reads and their 5' end regions were sequenced when not available. Phylogenetic analyses and protein localization predictions support the hypothesis concerning the presence of two separated tetrapyrrole pathways in E. gracilis. One of these pathways resembles the heme synthesis in primarily heterotrophic eukaryotes and was presumably present in the host cell prior to secondary endosymbiosis with a green alga. The second pathway is similar to the plastid-localized tetrapyrrole syntheses in plants and photosynthetic algae. It appears to be localized to the secondary plastid, presumably derived from an algal endosymbiont and probably serves only for the production of plastidial heme and chlorophyll. Thus, E. gracilis represents an evolutionary intermediate in a metabolic transformation of a primary heterotroph to a photoautotroph through secondary endosymbiosis. We propose here that the tetrapyrrole pathway serves as a highly informative marker for the evolution of plastids and plays a crucial role in the loss of plastids.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12027675
- 003
- CZ-PrNML
- 005
- 20160125121033.0
- 007
- ta
- 008
- 120817s2011 enk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1093/gbe/evr029 $2 doi
- 035 __
- $a (PubMed)21444293
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kořený, Luděk $u Department of Molecular Biology of Protists, Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czech Republic.
- 245 10
- $a Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis / $c L. Kořený, M. Oborník,
- 520 9_
- $a Genes encoding enzymes of the tetrapyrrole biosynthetic pathway were searched within Euglena gracilis EST databases and 454 genome reads and their 5' end regions were sequenced when not available. Phylogenetic analyses and protein localization predictions support the hypothesis concerning the presence of two separated tetrapyrrole pathways in E. gracilis. One of these pathways resembles the heme synthesis in primarily heterotrophic eukaryotes and was presumably present in the host cell prior to secondary endosymbiosis with a green alga. The second pathway is similar to the plastid-localized tetrapyrrole syntheses in plants and photosynthetic algae. It appears to be localized to the secondary plastid, presumably derived from an algal endosymbiont and probably serves only for the production of plastidial heme and chlorophyll. Thus, E. gracilis represents an evolutionary intermediate in a metabolic transformation of a primary heterotroph to a photoautotroph through secondary endosymbiosis. We propose here that the tetrapyrrole pathway serves as a highly informative marker for the evolution of plastids and plays a crucial role in the loss of plastids.
- 650 _2
- $a biologická evoluce $7 D005075
- 650 _2
- $a biosyntetické dráhy $7 D053898
- 650 _2
- $a Chlorophyta $x fyziologie $7 D000460
- 650 _2
- $a Euglena gracilis $x klasifikace $x genetika $x fyziologie $7 D005056
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a plastidy $x genetika $x metabolismus $7 D018087
- 650 _2
- $a protozoální proteiny $x genetika $x metabolismus $7 D015800
- 650 _2
- $a symbióza $7 D013559
- 650 _2
- $a tetrapyrroly $x biosyntéza $7 D045725
- 655 _2
- $a dopisy $7 D016422
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Oborník, Miroslav
- 773 0_
- $w MED00170504 $t Genome biology and evolution $x 1759-6653 $g Roč. 3(2011), s. 359-64
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21444293 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20160125121155 $b ABA008
- 999 __
- $a ok $b bmc $g 949717 $s 785021
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 3 $d 359-64 $e 20110327 $i 1759-6653 $m Genome biology and evolution $n Genome Biol Evol $x MED00170504
- LZP __
- $a Pubmed-20120817/11/03