Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu dopisy, práce podpořená grantem
PubMed
21444293
PubMed Central
PMC5654406
DOI
10.1093/gbe/evr029
PII: evr029
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- biosyntetické dráhy * MeSH
- Chlorophyta fyziologie MeSH
- Euglena gracilis klasifikace genetika fyziologie MeSH
- fylogeneze MeSH
- molekulární sekvence - údaje MeSH
- plastidy genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- symbióza MeSH
- tetrapyrroly biosyntéza MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
- tetrapyrroly MeSH
Genes encoding enzymes of the tetrapyrrole biosynthetic pathway were searched within Euglena gracilis EST databases and 454 genome reads and their 5' end regions were sequenced when not available. Phylogenetic analyses and protein localization predictions support the hypothesis concerning the presence of two separated tetrapyrrole pathways in E. gracilis. One of these pathways resembles the heme synthesis in primarily heterotrophic eukaryotes and was presumably present in the host cell prior to secondary endosymbiosis with a green alga. The second pathway is similar to the plastid-localized tetrapyrrole syntheses in plants and photosynthetic algae. It appears to be localized to the secondary plastid, presumably derived from an algal endosymbiont and probably serves only for the production of plastidial heme and chlorophyll. Thus, E. gracilis represents an evolutionary intermediate in a metabolic transformation of a primary heterotroph to a photoautotroph through secondary endosymbiosis. We propose here that the tetrapyrrole pathway serves as a highly informative marker for the evolution of plastids and plays a crucial role in the loss of plastids.
Zobrazit více v PubMed
Camadro JM, Chambon H, Jolles J, Labbe P. Purification and properties of coproporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Eur J Biochem. 1986;156:579–587. PubMed
Cook JR. Irreversible plastid loss in Euglena gracilis under physiological conditions. Plant Physiol. 1974;53:284–290. PubMed PMC
Corriveau JL, Beale SI. Influence of gabaculine on growth, chlorophyll synthesis, and δ-aminolevulinic acid synthase activity in Euglena gracilis. Plant Sci. 1986;45:9–17.
Dailey TA, Woodruff JH, Dailey HA. Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Biochem J. 2005;386:381–386. PubMed PMC
Durnford DG, Gray MW. Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell. 2006;5:2079–2091. PubMed PMC
Ferreira GC, Andrew TL, Karr SW, Dailey HA. Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex. J Biol Chem. 1988;263:3835–3839. PubMed
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–98.
Iida K, Kajiwara M. Carbon source dependence of the ratio of δ-aminolevulinic acid biosynthesis via the C5 and shemin pathways in Euglena gracilis (Euglenophyceae) J Phycol. 2008;44:292–298. PubMed
Iida K, Mimura I, Kajiwara M. Evaluation of two biosynthetic pathways to δ-aminolevulinic acid in Euglena gracilis. Eur J Biochem. 2002;269:291–297. PubMed
Ikeda S, Takata N. Deoxyribonuclease II purified from Euglena gracilis SM-ZK, a chloroplast-lacking mutant: comparison with porcine spleen deoxyribonuclease II. Comp Biochem Phys B Biochem Mol Biol. 2002;131:519–525. PubMed
Juknat AA, Dornemann D, Senger H. Different porphobilinogenases in cytoplasm and isolated-chloroplasts from light-grown Euglena gracilis Z. Z Naturforsch C. 1989;44:81–84.
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9:286–298. PubMed
Koch M, et al. Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J. 2004;23:1720–1728. PubMed PMC
Kořený L, Lukeš J, Oborník M. Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? Int J Parasitol. 2010;40:149–156. PubMed
Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004;21:1095–1109. PubMed
Masoumi A, et al. Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in Thermosynechococcus elongatus. Microbiology. 2008;154:3707–3714. PubMed
Mather W, Vaidya AB. Mitochondria in malaria and related parasites: ancient, diverse and streamlined. J Bioenerg Biomembr. 2008;40:425–433. PubMed
Mayer SM, Beale SI. δ-aminolevulinic acid biosynthesis from glutamate in Euglena gracilis. Plant Physiol. 1991;97:1094–1102. PubMed PMC
Mayer SM, Beale SI, Weinstein JD. Enzymatic conversion of glutamate to δ-aminolevulinic acid in soluble extracts of Euglena gracilis. J Biol Chem. 1987;262:12541–12549. PubMed
Nagaraj VA, Arumugam R, Prasad D, Rangarajan PN, Padmanaban G. Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Mol Biochem Parasitol. 2010;174:44–52. PubMed
Nagaraj VA, Prasad D, Arumugam R, Rangarajan PN, Padmanaban G. Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. Parasitol Int. 2010;59:121–127. PubMed
Nagaraj VA, Prasad D, Rangarajan PN, Padmanaban G. Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. Mol Biochem Parasitol. 2009;168:109–112. PubMed
Nicolas P. Sensitivity of Euglena gracilis to chloroplast-inhibiting antibiotics, and properties of antibiotic-resistant mutants. Plant Sci Lett. 1981;22:309–316.
Oborník M, Green BR. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol. 2005;22:2343–2353. PubMed
Oborník M, Janouškovec J, Chrudimský T, Lukeš J. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol. 2009;39:1–12. PubMed
Ohki Y, Hasegawa K, Musashi A, Tsubo Y. Loss of chloroplastic DNA in a Euglena mutant during growth in darkness. Arch Microbiol. 1984;139:147–150.
Okazaki T, Kurumaya K, Sagae Y, Kajiwara M. Studies on the biosynthesis of corrinoids and porphyrinoids. IV. Biosynthesis of chlorophyll in Euglena gracilis. Chem Pharm Bull. 1990;38:3303–3307. PubMed
Osafune T, Schiff JA. W10BSmL, a mutant of Euglena gracilis var. bacillaris lacking plastids. Exp Cell Res. 1983;148:530–536. PubMed
Panek H, O'Brian MR. A whole genome view of prokaryotic haem biosynthesis. Microbiology. 2002;148:2273–2282. PubMed
Petříček M, Petříčková K, Havlíček L, Felsberg J. Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J Bacteriol. 2006;188:5113–5123. PubMed PMC
Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol. 2007;24:54–62. PubMed
Rossetti MV, Juknat AA, Battle AMD. Soluble and particulate porphobilinogen-deaminase from dark-grown Euglena gracilis. Z Naturforsch C. 1989;44:578–580.
Rossetti MV, et al. Porphyrin biosynthesis in Euglena gracilis-V. Soluble and particulate PBG-ASE. Comp Biochem Phys B. 1986;85:451–458.
Russell GK, Draffan AG. Light-induced enzyme formation in a chlorophyll-less mutant of Euglena gracilis. Plant Physiol. 1978;62:678–682. PubMed PMC
Sato S, Clough B, Coates L, Wilson RJM. Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist. 2004;155:117–125. PubMed
Schulze JO, Schubert WD, Moser J, Jahn D, Heinz DW. Evolutionary relationship between initial enzymes of tetrapyrrole biosynthesis. J Mol Biol. 2006;358:1212–1220. PubMed
Shashidara LS, Smith AG. Expression and subcellular location of the tetrapyrrole synthesis enzyme porphobilinogen deaminase in light-grown Euglena gracilis and three nonchlorophyllous cell lines. Proc Natl Acad Sci U S A. 1991;88:63–67. PubMed PMC
Sobotka R, Tichý M, Wilde A, Hunter CN. Functional assignments for the C-terminal domains of the ferrochelatase from Synechocystis PCC 6803: the CAB domain plays a regulatory role and region II is essential for catalysis. Plant Physiol. 2010 doi:10.1104/pp.110.167528. PubMed PMC
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. PubMed
Stange-Thomann N, Thomann H-U, Lloyd AJ, Lyman H, Söll D. A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci U S A. 1994;91:7947–7951. PubMed PMC
Templeton TJ, et al. A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a gregarine and Cryptosporidium. Mol Biol Evol. 2010;27:235–248. PubMed PMC
van Dooren GG, Stimmler LM, McFadden GI. Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev. 2006;30:596–630. PubMed
Weinstein JD, Beale SI. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J Biol Chem. 1983;258:6799–6807. PubMed
Wu B. Heme biosynthetic pathway in apicomplexan parasites. 2006. [dissertation]. University of Pennsylvania. Available from ProQuest. Publication number 3246256.
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia
Enigmatic Evolutionary History of Porphobilinogen Deaminase in Eukaryotic Phototrophs
The Cryptic Plastid of Euglena longa Defines a New Type of Nonphotosynthetic Plastid Organelle
Heme pathway evolution in kinetoplastid protists
Make it, take it, or leave it: heme metabolism of parasites
GENBANK
JF292577, JF292578, JF292579, JF292580, JF292581, JF292582, JF292583, JF292584, JF292585, JF292586, JF292587