Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Tensegrity finite element models of mechanical tests of individual cells

J. Bursa, R. Lebis, J. Holata

. 2012 ; 20 (2) : 135-150.

Language English Country Netherlands

Document type Journal Article, Research Support, Non-U.S. Gov't

A three-dimensional finite element model of a vascular smooth muscle cell is based on models published recently; it comprehends elements representing cell membrane, cytoplasm and nucleus, and a complex tensegrity structure representing the cytoskeleton. In contrast to previous models of eucaryotic cells, this tensegrity structure consists of several parts. Its external and internal parts number 30 struts, 60 cables each, and their nodes are interconnected by 30 radial members; these parts represent cortical, nuclear and deep cytoskeletons, respectively. This arrangement enables us to simulate load transmission from the extracellular space to the nucleus or centrosome via membrane receptors (focal adhesions); the ability of the model was tested by simulation of some mechanical tests with isolated vascular smooth muscle cells. Although material properties of components defined on the basis of the mechanical tests are ambiguous, modelling of different types of tests has shown the ability of the model to simulate substantial global features of cell behaviour, e.g. "action at a distance effect" or the global load-deformation response of the cell under various types of loading. Based on computational simulations, the authors offer a hypothesis explaining the scatter of experimental results of indentation tests.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12034572
003      
CZ-PrNML
005      
20160902160845.0
007      
ta
008      
121023s2012 ne f 000 0|eng||
009      
AR
024    7_
$a 10.3233/thc-2011-0663 $2 doi
035    __
$a (PubMed)22508025
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Bursa, Jiří $7 xx0171938 $u Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic. bursa@fme.vutbr.cz
245    10
$a Tensegrity finite element models of mechanical tests of individual cells / $c J. Bursa, R. Lebis, J. Holata
520    9_
$a A three-dimensional finite element model of a vascular smooth muscle cell is based on models published recently; it comprehends elements representing cell membrane, cytoplasm and nucleus, and a complex tensegrity structure representing the cytoskeleton. In contrast to previous models of eucaryotic cells, this tensegrity structure consists of several parts. Its external and internal parts number 30 struts, 60 cables each, and their nodes are interconnected by 30 radial members; these parts represent cortical, nuclear and deep cytoskeletons, respectively. This arrangement enables us to simulate load transmission from the extracellular space to the nucleus or centrosome via membrane receptors (focal adhesions); the ability of the model was tested by simulation of some mechanical tests with isolated vascular smooth muscle cells. Although material properties of components defined on the basis of the mechanical tests are ambiguous, modelling of different types of tests has shown the ability of the model to simulate substantial global features of cell behaviour, e.g. "action at a distance effect" or the global load-deformation response of the cell under various types of loading. Based on computational simulations, the authors offer a hypothesis explaining the scatter of experimental results of indentation tests.
650    _2
$a počítačová simulace $7 D003198
650    _2
$a cytoskelet $7 D003599
650    _2
$a analýza metodou konečných prvků $7 D020342
650    _2
$a lidé $7 D006801
650    _2
$a buněčný převod mechanických signálů $x fyziologie $7 D040542
650    _2
$a biologické modely $7 D008954
650    _2
$a svaly hladké cévní $x chemie $x cytologie $x fyziologie $7 D009131
650    _2
$a myocyty hladké svaloviny $x chemie $x cytologie $x fyziologie $7 D032389
650    _2
$a mechanický stres $7 D013314
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lebis, Radek
700    1_
$a Holata, Jakub
773    0_
$w MED00007376 $t Technology and health care official journal of the European Society for Engineering and Medicine $x 1878-7401 $g Roč. 20, č. 2 (2012), s. 135-150
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22508025 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20121023 $b ABA008
991    __
$a 20160902161208 $b ABA008
999    __
$a ok $b bmc $g 956582 $s 792069
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 20 $c 2 $d 135-150 $i 1878-7401 $m Technology anad health care $n Technol Health Care $x MED00007376
LZP    __
$b NLK122 $a Pubmed-20121023

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...