Long-Term Implicit Epigenetic Stress Information in the Enteric Nervous System and its Contribution to Developing and Perpetuating IBS
Language English Country United Arab Emirates Media print
Document type Journal Article, Review
PubMed
38726788
PubMed Central
PMC11337685
DOI
10.2174/1570159x22666240507095700
PII: CN-EPUB-140226
Knihovny.cz E-resources
- Keywords
- ENS, IBS, Implicit epigenetic long-term memory, Microbiota-gut-brain axis, short-chain fatty acids., stress,
- MeSH
- Epigenesis, Genetic * MeSH
- Humans MeSH
- Brain-Gut Axis physiology MeSH
- Stress, Psychological * metabolism MeSH
- Gastrointestinal Microbiome physiology MeSH
- Enteric Nervous System * MeSH
- Irritable Bowel Syndrome * metabolism MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Psychiatric and mood disorders may play an important role in the development and persistence of irritable bowel syndrome (IBS). Previously, we hypothesized that stress-induced implicit memories may persist throughout life via epigenetic processes in the enteric nervous system (ENS), independent of the central nervous system (CNS). These epigenetic memories in the ENS may contribute to developing and perpetuating IBS. Here, we further elaborate on our earlier hypothesis. That is, during pregnancy, maternal prenatal stresses perturb the HPA axis and increase circulating cortisol levels, which can affect the maternal gut microbiota. Maternal cortisol can cross the placental barrier and increase cortisol-circulating levels in the fetus. This leads to dysregulation of the HPA axis, affecting the gut microbiota, microbial metabolites, and intestinal permeability in the fetus. Microbial metabolites, such as short-chain fatty acids (which also regulate the development of fetal ENS), can modulate a range of diseases by inducing epigenetic changes. These mentioned processes suggest that stress-related, implicit, long-term epigenetic memories may be programmed into the fetal ENS during pregnancy. Subsequently, this implicit epigenetic stress information from the fetal ENS could be conveyed to the CNS through the bidirectional microbiota-gut-brain axis (MGBA), leading to perturbed functional connectivity among various brain networks and the dysregulation of affective and pain processes.
National University of Public Services H 1083 Budapest Hungary
Neuroscience and Consciousness Research Department Vision Research Institute Lowell MA 01854 USA
See more in PubMed
Chen J., Barandouzi Z.A., Lee J., Xu W., Feng B., Starkweather A., Cong X. Psychosocial and sensory factors contribute to self-reported pain and quality of life in young adults with irritable bowel syndrome. Pain Manag. Nurs. 2022;23(5):646–654. doi: 10.1016/j.pmn.2021.12.004. PubMed DOI PMC
Tripathi R., Mehrotra S. Irritable bowel syndrome and its psychological management. Ind. Psychiatry J. 2015;24(1):91–93. doi: 10.4103/0972-6748.160947. PubMed DOI PMC
van Tilburg M.A.L., Palsson O.S., Whitehead W.E. Which psychological factors exacerbate irritable bowel syndrome? Development of a comprehensive model. J. Psychosom. Res. 2013;74(6):486–492. doi: 10.1016/j.jpsychores.2013.03.004. PubMed DOI PMC
Sharkey K.A., Mawe G.M. The enteric nervous system. Physiol. Rev. 2023;103(2):1487–1564. doi: 10.1152/physrev.00018.2022. PubMed DOI PMC
Furness J.B. Comparative and evolutionary aspects of the digestive system and its enteric nervous system control. Adv. Exp. Med. Biol. 2022;1383:165–177. doi: 10.1007/978-3-031-05843-1_16. PubMed DOI
Green S.A., Uy B.R., Bronner M.E. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature. 2017;544(7648):88–91. doi: 10.1038/nature21679. PubMed DOI PMC
Furness J.B., Stebbing M.J. The first brain: Species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterol. Motil. 2018;30(2):e13234. doi: 10.1111/nmo.13234. PubMed DOI
Császár-Nagy N., Bókkon I. Hypnotherapy and IBS: Implicit, long-term stress memory in the ENS? Heliyon. 2023;9(1):e12751. doi: 10.1016/j.heliyon.2022.e12751. PubMed DOI PMC
Mao C.P., Chen F.R., Huo J.H., Zhang L., Zhang G.R., Zhang B., Zhou X.Q. Altered resting‐state functional connectivity and effective connectivity of the habenula in irritable bowel syndrome: A cross‐sectional and machine learning study. Hum. Brain Mapp. 2020;41(13):3655–3666. doi: 10.1002/hbm.25038. PubMed DOI PMC
Weng Y., Qi R., Liu C., Ke J., Xu Q., Wang F., Zhang L.J., Lu G.M. Disrupted functional connectivity density in irritable bowel syndrome patients. Brain Imaging Behav. 2017;11(6):1812–1822. doi: 10.1007/s11682-016-9653-z. PubMed DOI
Bhatt R.R., Gupta A., Labus J.S., Zeltzer L.K., Tsao J.C., Shulman R.J., Tillisch K. Altered brain structure and functional connectivity and its relation to pain perception in girls with irritable bowel syndrome. Psychosom. Med. 2019;81(2):146–154. doi: 10.1097/PSY.0000000000000655. PubMed DOI PMC
Nisticò V., Rossi R.E., D’Arrigo A.M., Priori A., Gambini O., Demartini B. Functional neuroimaging in irritable bowel syndrome: A systematic review highlights common brain alterations with functional movement disorders. J. Neurogastroenterol. Motil. 2022;28(2):185–203. doi: 10.5056/jnm21079. PubMed DOI PMC
Qi R., Liu C., Weng Y., Xu Q., Chen L., Wang F., Zhang L.J., Lu G.M. Disturbed interhemispheric functional connectivity rather than structural connectivity in irritable bowel syndrome. Front. Mol. Neurosci. 2016;9:141. doi: 10.3389/fnmol.2016.00141. PubMed DOI PMC
Li J., He P., Lu X., Guo Y., Liu M., Li G., Ding J. A resting-state functional magnetic resonance imaging study of whole-brain functional connectivity of voxel levels in patients with irritable bowel syndrome with depressive symptoms. J. Neurogastroenterol. Motil. 2021;27(2):248–256. doi: 10.5056/jnm20209. PubMed DOI PMC
Martinou E., Stefanova I., Iosif E., Angelidi A.M. Neurohormonal changes in the gut-brain axis and underlying neuroendocrine mechanisms following bariatric surgery. Int. J. Mol. Sci. 2022;23(6):3339. doi: 10.3390/ijms23063339. PubMed DOI PMC
Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015;28(2):203–209. PubMed PMC
Muhammad F., Fan B., Wang R., Ren J., Jia S., Wang L., Chen Z., Liu X.A. The molecular gut-brain axis in early brain development. Int. J. Mol. Sci. 2022;23(23):15389. doi: 10.3390/ijms232315389. PubMed DOI PMC
Sarubbo F., Cavallucci V., Pani G. The influence of gut microbiota on neurogenesis: Evidence and hopes. Cells. 2022;11(3):382. doi: 10.3390/cells11030382. PubMed DOI PMC
Song J.G., Yu M.S., Lee B., Lee J., Hwang S.H., Na D., Kim H.W. Analysis methods for the gut microbiome in neuropsychiatric and neurodegenerative disorders. Comput. Struct. Biotechnol. J. 2022;20:1097–1110. doi: 10.1016/j.csbj.2022.02.024. PubMed DOI PMC
Wachsmuth H.R., Weninger S.N., Duca F.A. Role of the gut–brain axis in energy and glucose metabolism. Exp. Mol. Med. 2022;54(4):377–392. doi: 10.1038/s12276-021-00677-w. PubMed DOI PMC
Chakrabarti A., Geurts L., Hoyles L., Iozzo P., Kraneveld A.D., La Fata G., Miani M., Patterson E., Pot B., Shortt C., Vauzour D. The microbiota-gut-brain axis: Pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell. Mol. Life Sci. 2022;79(2):80. doi: 10.1007/s00018-021-04060-w. PubMed DOI PMC
Rutsch A., Kantsjö J.B., Ronchi F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol. 2020;11:604179. doi: 10.3389/fimmu.2020.604179. PubMed DOI PMC
Karl J.P., Hatch A.M., Arcidiacono S.M., Pearce S.C., Feliciano P.I.G., Doherty L.A., Soares J.W. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 2018;9:2013. doi: 10.3389/fmicb.2018.02013. PubMed DOI PMC
Gebrayel P., Nicco C., Al Khodor S., Bilinski J., Caselli E., Comelli E.M., Egert M., Giaroni C., Karpinski T.M., Loniewski I., Mulak A., Reygner J., Samczuk P., Serino M., Sikora M., Terranegra A., Ufnal M., Villeger R., Pichon C., Konturek P., Edeas M. Microbiota medicine: Towards clinical revolution. J. Transl. Med. 2022;20(1):111. doi: 10.1186/s12967-022-03296-9. PubMed DOI PMC
Afzaal M., Saeed F., Shah Y.A., Hussain M., Rabail R., Socol C.T., Hassoun A., Pateiro M., Lorenzo J.M., Rusu A.V., Aadil R.M. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022;13:999001. doi: 10.3389/fmicb.2022.999001. PubMed DOI PMC
Chidambaram S.B., Essa M.M., Rathipriya A.G., Bishir M., Ray B., Mahalakshmi A.M., Tousif A.H., Sakharkar M.K., Kashyap R.S., Friedland R.P., Monaghan T.M. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol. Ther. 2022;231:107988. doi: 10.1016/j.pharmthera.2021.107988. PubMed DOI
Carding S., Verbeke K., Vipond D.T., Corfe B.M., Owen L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015;26:26191. PubMed PMC
Scriven M., Dinan T., Cryan J., Wall M. Neuropsychiatric disorders: Influence of gut microbe to brain signalling. Diseases. 2018;6(3):78. doi: 10.3390/diseases6030078. PubMed DOI PMC
Sandhu K.V., Sherwin E., Schellekens H., Stanton C., Dinan T.G., Cryan J.F. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res. 2017;179:223–244. doi: 10.1016/j.trsl.2016.10.002. PubMed DOI
Socała K., Doboszewska U., Szopa A., Serefko A., Włodarczyk M., Zielińska A., Poleszak E., Fichna J., Wlaź P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res. 2021;172:105840. doi: 10.1016/j.phrs.2021.105840. PubMed DOI
Zang Y., Lai X., Li C., Ding D., Wang Y., Zhu Y. The role of gut microbiota in various neurological and psychiatric disorders-an evidence mapping based on quantified evidence. Mediators Inflamm. 2023;2023:1–16. doi: 10.1155/2023/5127157. PubMed DOI PMC
Suganya K., Koo B.S. Gut-brain axis: Role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int. J. Mol. Sci. 2020;21(20):7551. doi: 10.3390/ijms21207551. PubMed DOI PMC
Abo-Shaban T., Sharna S.S., Hosie S., Lee C.Y.Q., Balasuriya G.K., McKeown S.J., Franks A.E., Yardin H.E.L. Issues for patchy tissues: Defining roles for gut-associated lymphoid tissue in neurodevelopment and disease. J. Neural Transm. 2023;130(3):269–280. doi: 10.1007/s00702-022-02561-x. PubMed DOI PMC
Agustí A., Pardo G.M.P., Almela L.I., Campillo I., Maes M., Pérez R.M., Sanz Y. Interplay between the gut-brain axis, obesity and cognitive function. Front. Neurosci. 2018;12:155. doi: 10.3389/fnins.2018.00155. PubMed DOI PMC
Rudzki L., Maes M. The microbiota-gut-immune-glia (MGIG) axis in major depression. Mol. Neurobiol. 2020;57(10):4269–4295. doi: 10.1007/s12035-020-01961-y. PubMed DOI
Clapp M., Aurora N., Herrera L., Bhatia M., Wilen E., Wakefield S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pract. 2017;7(4):987. doi: 10.4081/cp.2017.987. PubMed DOI PMC
Berk M., Williams L.J., Jacka F.N., O’Neil A., Pasco J.A., Moylan S., Allen N.B., Stuart A.L., Hayley A.C., Byrne M.L., Maes M. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013;11(1):200. doi: 10.1186/1741-7015-11-200. PubMed DOI PMC
Maes M., Vasupanrajit A., Jirakran K., Klomkliew P., Chanchaem P., Tunvirachaisakul C., Plaimas K., Suratanee A., Payungporn S. Adverse childhood experiences and reoccurrence of illness impact the gut microbiome, which affects suicidal behaviours and the phenome of major depression: Towards enterotypic phenotypes. Acta Neuropsychiatr. 2023;35(6):328–345. doi: 10.1017/neu.2023.21. PubMed DOI
Maes M., Yirmyia R., Noraberg J., Brene S., Hibbeln J., Perini G., Kubera M., Bob P., Lerer B., Maj M. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab. Brain Dis. 2009;24(1):27–53. doi: 10.1007/s11011-008-9118-1. PubMed DOI
Rudzki L., Maes M. From “Leaky Gut” to impaired glia-neuron communication in depression. Adv. Exp. Med. Biol. 2021;1305:129–155. doi: 10.1007/978-981-33-6044-0_9. PubMed DOI
Martínez R.S., Real S.L., García G.A.P., Cruz T.E., Jonapa C.L.A., Amedei A., García A.M.M. Neuroinflammation, microbiota-gut-brain axis, and depression: The vicious circle. J. Integr. Neurosci. 2023;22(3):65. doi: 10.31083/j.jin2203065. PubMed DOI
Qin H.Y., Cheng C.W., Tang X.D., Bian Z.X. Impact of psychological stress on irritable bowel syndrome. World J. Gastroenterol. 2014;20(39):14126–14131. doi: 10.3748/wjg.v20.i39.14126. PubMed DOI PMC
Belei O., Basaca D.G., Olariu L., Pantea M., Bozgan D., Nanu A., Sîrbu I., Mărginean O., Enătescu I. The interaction between stress and inflammatory bowel disease in pediatric and adult patients. J. Clin. Med. 2024;13(5):1361. doi: 10.3390/jcm13051361. PubMed DOI PMC
Howland R.H. Vagus nerve stimulation. Curr. Behav. Neurosci. Rep. 2014;1(2):64–73. doi: 10.1007/s40473-014-0010-5. PubMed DOI PMC
Berthoud H.R., Neuhuber W.L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 2000;85(1-3):1–17. doi: 10.1016/S1566-0702(00)00215-0. PubMed DOI
Forsythe P., Bienenstock J., Kunze W.A. Vagal pathways for microbiome-brain-gut axis communication. Adv. Exp. Med. Biol. 2014;817:115–133. doi: 10.1007/978-1-4939-0897-4_5. PubMed DOI
Latorre R., Sternini C., Giorgio D.R., Meerveld G.V.B. Enteroendocrine cells: A review of their role in brain–gut communication. Neurogastroenterol. Motil. 2016;28(5):620–630. doi: 10.1111/nmo.12754. PubMed DOI PMC
Kanai T., Teratani T. Role of the vagus nerve in the gut-brain axis: Development and maintenance of gut regulatory T cells via the liver-brain-gut vago-vagal reflex. Brain Nerve. 2022;74(8):971–977. PubMed
Han Y., Wang B., Gao H., He C., Hua R., Liang C., Zhang S., Wang Y., Xin S., Xu J. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J. Inflamm. Res. 2022;15:6213–6230. doi: 10.2147/JIR.S384949. PubMed DOI PMC
Chang L., Wei Y., Hashimoto K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res. Bull. 2022;182:44–56. doi: 10.1016/j.brainresbull.2022.02.004. PubMed DOI
Garg K., Mohajeri M.H. Potential effects of the most prescribed drugs on the microbiota-gut-brain-axis: A review. Brain Res. Bull. 2024;207:110883. doi: 10.1016/j.brainresbull.2024.110883. PubMed DOI
Vich Vila A., Collij V., Sanna S., Sinha T., Imhann F., Bourgonje A.R., Mujagic Z., Jonkers D.M.A.E., Masclee A.A.M., Fu J., Kurilshikov A., Wijmenga C., Zhernakova A., Weersma R.K. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 2020;11(1):362. doi: 10.1038/s41467-019-14177-z. PubMed DOI PMC
Karakan T., Ozkul C., Akkol K.E., Bilici S., Sánchez S.E., Capasso R. Gut-brain-microbiota axis: Antibiotics and functional gastrointestinal disorders. Nutrients. 2021;13(2):389. doi: 10.3390/nu13020389. PubMed DOI PMC
Maier L., Pruteanu M., Kuhn M., Zeller G., Telzerow A., Anderson E.E., Brochado A.R., Fernandez K.C., Dose H., Mori H., Patil K.R., Bork P., Typas A. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–628. doi: 10.1038/nature25979. PubMed DOI PMC
Essmat N., Karádi D.Á., Zádor F., Király K., Fürst S., Khrasani A.M. Insights into the current and possible future use of opioid antagonists in relation to opioid-induced constipation and dysbiosis. Molecules. 2023;28(23):7766. doi: 10.3390/molecules28237766. PubMed DOI PMC
Bernabè G., Shalata M.E.M., Zatta V., Bellato M., Porzionato A., Castagliuolo I., Brun P. Antibiotic treatment induces long-lasting effects on gut microbiota and the enteric nervous system in mice. Antibiotics. 2023;12(6):1000. doi: 10.3390/antibiotics12061000. PubMed DOI PMC
Caparrós-Martín J.A., Lareu R.R., Ramsay J.P., Peplies J., Reen F.J., Headlam H.A., Ward N.C., Croft K.D., Newsholme P., Hughes J.D., O’Gara F. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome. 2017;5(1):95. doi: 10.1186/s40168-017-0312-4. PubMed DOI PMC
Doestzada M., Vila A.V., Zhernakova A., Koonen D.P.Y., Weersma R.K., Touw D.J., Kuipers F., Wijmenga C., Fu J. Pharmacomicrobiomics: A novel route towards personalized medicine? Protein Cell. 2018;9(5):432–445. doi: 10.1007/s13238-018-0547-2. PubMed DOI PMC
Crişan I.M., Dumitraşcu D.L. Irritable bowel syndrome: Peripheral mechanisms and therapeutic implications. Clujul Med. 2014;87(2):73–79. PubMed PMC
Saha L. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine. World J. Gastroenterol. 2014;20(22):6759–6773. doi: 10.3748/wjg.v20.i22.6759. PubMed DOI PMC
Weaver K.R., Melkus G.D.E., Henderson W.A. Irritable bowel syndrome. Am. J. Nurs. 2017;117(6):48–55. doi: 10.1097/01.NAJ.0000520253.57459.01. PubMed DOI PMC
Lee Y.J., Park K.S. Irritable bowel syndrome: Emerging paradigm in pathophysiology. World J. Gastroenterol. 2014;20(10):2456–2469. doi: 10.3748/wjg.v20.i10.2456. PubMed DOI PMC
Chong P.P., Chin V.K., Looi C.Y., Wong W.F., Madhavan P., Yong V.C. The microbiome and irritable bowel syndrome - A review on the pathophysiology, current research and future therapy. Front. Microbiol. 2019;10:1136. doi: 10.3389/fmicb.2019.01136. PubMed DOI PMC
Oka P., Parr H., Barberio B., Black C.J., Savarino E.V., Ford A.C. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020;5(10):908–917. doi: 10.1016/S2468-1253(20)30217-X. PubMed DOI
Camilleri M. Diagnosis and treatment of irritable bowel syndrome: A review. JAMA. 2021;325(9):865–877. doi: 10.1001/jama.2020.22532. PubMed DOI
Dinic R.B., Rajkovic T.S., Grgov S., Petrovic G., Zivkovic V. Irritable bowel syndrome - From etiopathogenesis to therapy. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2018;162(1):1–9. doi: 10.5507/bp.2017.057. PubMed DOI
Rodiño-Janeiro B.K., Vicario M., Cotoner A.C., García P.R., Santos J. A review of microbiota and irritable bowel syndrome: Future in therapies. Adv. Ther. 2018;35(3):289–310. doi: 10.1007/s12325-018-0673-5. PubMed DOI PMC
Black C.J., Thakur E.R., Houghton L.A., Quigley E.M.M., Moayyedi P., Ford A.C. Efficacy of psychological therapies for irritable bowel syndrome: Systematic review and network meta-analysis. Gut. 2020;69(8):1441–1451. doi: 10.1136/gutjnl-2020-321191. PubMed DOI
Grundmann O., Yoon S.L. Irritable bowel syndrome: Epidemiology, diagnosis and treatment: An update for health‐care practitioners. J. Gastroenterol. Hepatol. 2010;25(4):691–699. doi: 10.1111/j.1440-1746.2009.06120.x. PubMed DOI
Staudacher H.M., Walus M.A., Ford A.C. Common mental disorders in irritable bowel syndrome: pathophysiology, management, and considerations for future randomised controlled trials. Lancet Gastroenterol. Hepatol. 2021;6(5):401–410. doi: 10.1016/S2468-1253(20)30363-0. PubMed DOI
Juruena M.F., Eror F., Cleare A.J., Young A.H. The role of early life stress in HPA axis and anxiety. Adv. Exp. Med. Biol. 2020;1191:141–153. doi: 10.1007/978-981-32-9705-0_9. PubMed DOI
Distrutti E., Monaldi L., Ricci P., Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J. Gastroenterol. 2016;22(7):2219–2241. doi: 10.3748/wjg.v22.i7.2219. PubMed DOI PMC
Occhipinti K., Smith J. Irritable bowel syndrome: A review and update. Clin. Colon Rectal Surg. 2012;25(1):046–052. doi: 10.1055/s-0032-1301759. PubMed DOI PMC
Kano M., Muratsubaki T., Van Oudenhove L., Morishita J., Yoshizawa M., Kohno K., Yagihashi M., Tanaka Y., Mugikura S., Dupont P., Ly H.G., Takase K., Kanazawa M., Fukudo S. Altered brain and gut responses to corticotropin-releasing hormone (CRH) in patients with irritable bowel syndrome. Sci. Rep. 2017;7(1):12425. doi: 10.1038/s41598-017-09635-x. PubMed DOI PMC
Tarar Z.I., Farooq U., Zafar Y., Gandhi M., Raza S., Kamal F., Tarar M.F., Ghouri Y.A. Burden of anxiety and depression among hospitalized patients with irritable bowel syndrome: A nationwide analysis. Ir. J. Med. Sci. 2023;192(5):2159–2166. doi: 10.1007/s11845-022-03258-6. PubMed DOI
Eijsbouts C., Zheng T., Kennedy N.A., Bonfiglio F., Anderson C.A., Moutsianas L., Holliday J., Shi J., Shringarpure S., Agee M., Aslibekyan S., Auton A., Bell R.K., Bryc K., Clark S.K., Elson S.L., Brant K., Fontanillas P., Furlotte N.A., Gandhi P.M., Heilbron K., Hicks B., Hinds D.A., Huber K.E., Jewett E.M., Jiang Y., Kleinman A., Lin K-H., Litterman N.K., Luff M.K., McCreight J.C., McIntyre M.H., McManus K.F., Mountain J.L., Mozaffari S.V., Nandakumar P., Noblin E.S., Northover C.A.M., O’Connell J., Petrakovitz A.A., Pitts S.J., Poznik G.D., Sathirapongsasuti J.F., Shastri A.J., Shelton J.F., Tian C., Tung J.Y., Tunney R.J., Vacic V., Wang X., Zare A.S., Voda A-I., Kashyap P., Chang L., Mayer E., Heitkemper M., Sayuk G.S., Kulka R.T., Ringel Y., Chey W.D., Eswaran S., Merchant J.L., Shulman R.J., Bujanda L., Etxebarria G.K., Dlugosz A., Lindberg G., Schmidt P.T., Karling P., Ohlsson B., Walter S., Faresjö Å.O., Simren M., Halfvarson J., Portincasa P., Barbara G., Satta U.P., Neri M., Nardone G., Cuomo R., Galeazzi F., Bellini M., Latiano A., Houghton L., Jonkers D., Kurilshikov A., Weersma R.K., Netea M., Tesarz J., Gauss A., Stengel G.M., Andresen V., Frieling T., Pehl C., Schaefert R., Niesler B., Lieb W., Hanevik K., Langeland N., Wensaas K-A., Litleskare S., Gabrielsen M.E., Thomas L., Thijs V., Lemmens R., Van Oudenhove L., Wouters M., Farrugia G., Franke A., Hübenthal M., Abecasis G., Zawistowski M., Skogholt A.H., Jensen N.E., Hveem K., Esko T., Laving T.M., Zhernakova A., Camilleri M., Boeckxstaens G., Whorwell P.J., Spiller R., McVean G., D’Amato M., Jostins L., Parkes M. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat. Genet. 2021;53(11):1543–1552. doi: 10.1038/s41588-021-00950-8. PubMed DOI PMC
Aziz M., Kumar J., Nawawi M.K., Ali R.R., Mokhtar N. Irritable bowel syndrome, depression, and neurodegeneration: A bidirectional communication from gut to brain. Nutrients. 2021;13(9):3061. doi: 10.3390/nu13093061. PubMed DOI PMC
Midenfjord I., Polster A., Sjövall H., Törnblom H., Simrén M. Anxiety and depression in irritable bowel syndrome: Exploring the interaction with other symptoms and pathophysiology using multivariate analyses. Neurogastroenterol. Motil. 2019;31(8):e13619. doi: 10.1111/nmo.13619. PubMed DOI
Ng Q.X., Soh A.Y.S., Loke W., Venkatanarayanan N., Lim D.Y., Yeo W.S. Systematic review with meta‐analysis: The association between post‐traumatic stress disorder and irritable bowel syndrome. J. Gastroenterol. Hepatol. 2019;34(1):68–73. doi: 10.1111/jgh.14446. PubMed DOI
Creed F. Risk factors for self-reported irritable bowel syndrome with prior psychiatric disorder: The lifelines cohort study. J. Neurogastroenterol. Motil. 2022;28(3):442–453. doi: 10.5056/jnm21041. PubMed DOI PMC
Fadgyas-Stanculete M., Buga A.M., Popa-Wagner A., Dumitrascu D.L. The relationship between irritable bowel syndrome and psychiatric disorders: From molecular changes to clinical manifestations. J. Mol. Psychiatry. 2014;2(1):4. doi: 10.1186/2049-9256-2-4. PubMed DOI PMC
Lydiard R.B., Falsetti S.A. Experience with anxiety and depression treatment studies: implications for designing irritable bowel syndrome clinical trials. Am. J. Med. 1999;107(5):65–73. doi: 10.1016/S0002-9343(99)00082-0. PubMed DOI
Tao E., Long G., Yang T., Chen B., Guo R., Ye D., Fang M., Jiang M. Maternal separation induced visceral hypersensitivity evaluated via novel and small size distention balloon in post-weaning mice. Front. Neurosci. 2022;15:803957. doi: 10.3389/fnins.2021.803957. PubMed DOI PMC
Ge L., Liu S., Li S., Yang J., Hu G., Xu C., Song W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Front. Immunol. 2022;13:1016578. doi: 10.3389/fimmu.2022.1016578. PubMed DOI PMC
Sun Y., Xie R., Li L., Jin G., Zhou B., Huang H., Li M., Yang Y., Liu X., Cao X., Wang B., Liu W., Jiang K., Cao H. Prenatal maternal stress exacerbates experimental colitis of offspring in adulthood. Front. Immunol. 2021;12:700995. doi: 10.3389/fimmu.2021.700995. PubMed DOI PMC
Császár-Nagy N., Bókkon I. Mother-newborn separation at birth in hospitals: A possible risk for neurodevelopmental disorders? Neurosci. Biobehav. Rev. 2018;84:337–351. doi: 10.1016/j.neubiorev.2017.08.013. PubMed DOI
Bradford K., Shih W., Videlock E.J., Presson A.P., Naliboff B.D., Mayer E.A., Chang L. Association between early adverse life events and irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 2012;10(4):385–390.e1. doi: 10.1016/j.cgh.2011.12.018. PubMed DOI PMC
Chitkara D.K., van Tilburg M.A.L., Martin B.N., Whitehead W.E. Early life risk factors that contribute to irritable bowel syndrome in adults: A systematic review. Am. J. Gastroenterol. 2008;103(3):765–774. doi: 10.1111/j.1572-0241.2007.01722.x. PubMed DOI PMC
Videlock E.J., Chang L. Latest insights on the pathogenesis of irritable bowel syndrome. Gastroenterol. Clin. North Am. 2021;50(3):505–522. doi: 10.1016/j.gtc.2021.04.002. PubMed DOI
Tang H.Y., Jiang A.J., Wang X.Y., Wang H., Guan Y.Y., Li F., Shen G.M. Uncovering the pathophysiology of irritable bowel syndrome by exploring the gut-brain axis: A narrative review. Ann. Transl. Med. 2021;9(14):1187. doi: 10.21037/atm-21-2779. PubMed DOI PMC
Salhy E.M. Irritable bowel syndrome: Diagnosis and pathogenesis. World J. Gastroenterol. 2012;18(37):5151–5163. doi: 10.3748/wjg.v18.i37.5151. PubMed DOI PMC
Gieryńska M., Szulc-Dąbrowska L., Struzik J., Mielcarska M.B., Zboroch G.K.P. Integrity of the intestinal barrier: the involvement of epithelial cells and microbiota-a mutual relationship. Animals. 2022;12(2):145. doi: 10.3390/ani12020145. PubMed DOI PMC
Gritz E.C., Bhandari V. The human neonatal gut microbiome: A brief review. Front Pediatr. 2015;3:17. PubMed PMC
Wu H.J., Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14. doi: 10.4161/gmic.19320. PubMed DOI PMC
Ng Q.X., Soh A.Y.S., Loke W., Lim D.Y., Yeo W.S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res. 2018;11:345–349. doi: 10.2147/JIR.S174982. PubMed DOI PMC
Shi N., Li N., Duan X., Niu H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. 2017;4(1):14. doi: 10.1186/s40779-017-0122-9. PubMed DOI PMC
Lazaridis N., Germanidis G. Current insights into the innate immune system dysfunction in irritable bowel syndrome. Ann. Gastroenterol. 2018;31(2):171–187. doi: 10.20524/aog.2018.0229. PubMed DOI PMC
Akiho H., Ihara E., Nakamura K. Low-grade inflammation plays a pivotal role in gastrointestinal dysfunction in irritable bowel syndrome. World J. Gastrointest. Pathophysiol. 2010;1(3):97–105. doi: 10.4291/wjgp.v1.i3.97. PubMed DOI PMC
El-Hakim Y., Bake S., Mani K.K., Sohrabji F. Impact of intestinal disorders on central and peripheral nervous system diseases. Neurobiol. Dis. 2022;165:105627. doi: 10.1016/j.nbd.2022.105627. PubMed DOI
Lu S., Jiang H., Shi Y. Association between irritable bowel syndrome and Parkinson’s disease: A systematic review and meta‐analysis. Acta Neurol. Scand. 2022;145(4):442–448. doi: 10.1111/ane.13570. PubMed DOI
Yoon S.Y., Shin J., Heo S.J., Chang J.S., Sunwoo M.K., Kim Y.W. Irritable bowel syndrome and subsequent risk of Parkinson’s disease: A nationwide population-based matched-cohort study. J. Neurol. 2022;269(3):1404–1412. doi: 10.1007/s00415-021-10688-2. PubMed DOI
Alvino B., Arianna F., Assunta B., Antonio C., Emanuele D., Giorgia M., Leonardo S., Daniele S., Renato D., Buscarinu M.C., Massimiliano M., Crisafulli S.G., Aurora Z., Nicoletti G.C., Marco S., Viola B., Francesco P., Marfia A.G., Grazia S., Valentina S., Davide O., Giovanni S., Gioacchino T., Gallo A. Prevalence and predictors of bowel dysfunction in a large multiple sclerosis outpatient population: An Italian multicenter study. J. Neurol. 2022;269(3):1610–1617. [Erratum in: Prevalence and predictors of bowel dysfunction in a large multiple sclerosis outpatient population: An Italian multicenter study. J. Neurol., 2022; 269(5): 2824-2825. PubMed PMC
Lee Y.T., Hu L.Y., Shen C.C., Huang M.W., Tsai S.J., Yang A.C., Hu C.K., Perng C.L., Huang Y.S., Hung J.H. Risk of psychiatric disorders following irritable bowel syndrome: A nationwide population-based cohort study. PLoS One. 2015;10(7):e0133283. doi: 10.1371/journal.pone.0133283. PubMed DOI PMC
Meade E., Garvey M. The Role of neuro-immune interaction in chronic pain conditions; Functional somatic syndrome, neurogenic inflammation, and peripheral neuropathy. Int. J. Mol. Sci. 2022;23(15):8574. doi: 10.3390/ijms23158574. PubMed DOI PMC
Frauches B.A.C., Boesmans W. The enteric nervous system: The hub in a star network. Nat. Rev. Gastroenterol. Hepatol. 2020;17(12):717–718. doi: 10.1038/s41575-020-00377-2. PubMed DOI
Holland A.M., Frauches B.A.C., Keszthelyi D., Melotte V., Boesmans W. The enteric nervous system in gastrointestinal disease etiology. Cell. Mol. Life Sci. 2021;78(10):4713–4733. doi: 10.1007/s00018-021-03812-y. PubMed DOI PMC
Nagy N., Goldstein A.M. Enteric nervous system development: A crest cell’s journey from neural tube to colon. Semin. Cell Dev. Biol. 2017;66:94–106. doi: 10.1016/j.semcdb.2017.01.006. PubMed DOI PMC
Gershon M.D., Ratcliffe E.M. Developmental biology of the enteric nervous system: Pathogenesis of Hirschsprung’s disease and other congenital dysmotilities. Semin. Pediatr. Surg. 2004;13(4):224–235. doi: 10.1053/j.sempedsurg.2004.10.019. PubMed DOI PMC
Torroglosa A., Alves M.M., Fernández R.M., Antiñolo G., Hofstra R.M., Borrego S. Epigenetics in ENS development and Hirschsprung disease. Dev. Biol. 2016;417(2):209–216. doi: 10.1016/j.ydbio.2016.06.017. PubMed DOI
de Jonge W.J. The gut’s little brain in control of intestinal immunity. ISRN Gastroenterol. 2013;2013:1–17. doi: 10.1155/2013/630159. PubMed DOI PMC
Yang X., Lou J., Shan W., Ding J., Jin Z., Hu Y., Du Q., Liao Q., Xie R., Xu J. Pathophysiologic role of neurotransmitters in digestive diseases. Front. Physiol. 2021;12:567650. doi: 10.3389/fphys.2021.567650. PubMed DOI PMC
Spencer N.J., Travis L., Wiklendt L., Costa M., Hibberd T.J., Brookes S.J., Dinning P., Hu H., Wattchow D.A., Sorensen J. Long range synchronization within the enteric nervous system underlies propulsion along the large intestine in mice. Commun. Biol. 2021;4(1):955. doi: 10.1038/s42003-021-02485-4. PubMed DOI PMC
Annahazi A., Schemann M. The enteric nervous system: “A little brain in the gut”. Neuroforum. 2020;26(1):31–42. doi: 10.1515/nf-2019-0027. DOI
Schemann M., Frieling T., Enck P. To learn, to remember, to forget—How smart is the gut? Acta Physiol. 2020;228(1):e13296. doi: 10.1111/apha.13296. PubMed DOI PMC
Furness J.B., Clerc N., Kunze W.A. Memory in the enteric nervous system. Gut. 2000;47(S4):60–62. doi: 10.1136/gut.47.suppl_4.iv60. PubMed DOI PMC
Cheng L. Progress on the regulation of DNA methylation in the development of the enteric nervous system. Int. J. Pediatr. 2018;6:756–760.
Jaroy E.G., Acosta-Jimenez L., Hotta R., Goldstein A.M., Emblem R., Klungland A., Ougland R. “Too much guts and not enough brains”: (epi)genetic mechanisms and future therapies of Hirschsprung disease — A review. Clin. Epigenetics. 2019;11(1):135. doi: 10.1186/s13148-019-0718-x. PubMed DOI PMC
Uribe R.A. Genetic regulation of enteric nervous system development in zebrafish. Biochem. Soc. Trans. 2024;52(1):177–190. doi: 10.1042/BST20230343. PubMed DOI PMC
Kenny S.E., Tam P.K.H., Barcelo G.M. Hirschsprung’s disease. Semin. Pediatr. Surg. 2010;19(3):194–200. doi: 10.1053/j.sempedsurg.2010.03.004. PubMed DOI
Diposarosa R., Bustam N.A., Sahiratmadja E., Susanto P.S., Sribudiani Y. Literature review: Enteric nervous system development, genetic and epigenetic regulation in the etiology of Hirschsprung’s disease. Heliyon. 2021;7(6):e07308. doi: 10.1016/j.heliyon.2021.e07308. PubMed DOI PMC
Brosens E., Burns A.J., Brooks A.S., Matera I., Borrego S., Ceccherini I., Tam P.K., Barceló G.M.M., Thapar N., Benninga M.A., Hofstra R.M.W., Alves M.M. Genetics of enteric neuropathies. Dev. Biol. 2016;417(2):198–208. doi: 10.1016/j.ydbio.2016.07.008. PubMed DOI
Torroglosa A., Villalba-Benito L., Toro L.B., Fernández R.M., Antiñolo G., Borrego S. Epigenetic mechanisms in hirschsprung disease. Int. J. Mol. Sci. 2019;20(13):3123. doi: 10.3390/ijms20133123. PubMed DOI PMC
Heanue T.A., Shepherd I.T., Burns A.J. Enteric nervous system development in avian and zebrafish models. Dev. Biol. 2016;417(2):129–138. doi: 10.1016/j.ydbio.2016.05.017. PubMed DOI
Kuil L.E., Chauhan R.K., Cheng W.W., Hofstra R.M.W., Alves M.M. Zebrafish: A model organism for studying enteric nervous system development and disease. Front. Cell Dev. Biol. 2021;8:629073. doi: 10.3389/fcell.2020.629073. PubMed DOI PMC
Ganz J., Melancon E., Wilson C., Amores A., Batzel P., Strader M., Braasch I., Diba P., Kuhlman J.A., Postlethwait J.H., Eisen J.S. Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Dev. Biol. 2019;455(2):473–484. doi: 10.1016/j.ydbio.2019.08.002. PubMed DOI PMC
Feng G., Sun Y. The Polycomb group gene rnf2 is essential for central and enteric neural system development in zebrafish. Front. Neurosci. 2022;16:960149. doi: 10.3389/fnins.2022.960149. PubMed DOI PMC
Liu J., Tan Y., Cheng H., Zhang D., Feng W., Peng C. Functions of gut microbiota metabolites, current status and future perspectives. Aging Dis. 2022;13(4):1106–1126. doi: 10.14336/AD.2022.0104. PubMed DOI PMC
Fujisaka S., Watanabe Y., Tobe K. The gut microbiome: A core regulator of metabolism. J. Endocrinol. 2023;256(3):e220111. doi: 10.1530/JOE-22-0111. PubMed DOI PMC
Ansari M.H.R., Saher S., Parveen R., Khan W., Khan I.A., Ahmad S. Role of gut microbiota metabolism and biotransformation on dietary natural products to human health implications with special reference to biochemoinformatics approach. J. Tradit. Complement. Med. 2023;13(2):150–160. doi: 10.1016/j.jtcme.2022.03.005. PubMed DOI PMC
Swer N.M., Venkidesh B.S., Murali T.S., Mumbrekar K.D. Gut microbiota-derived metabolites and their importance in neurological disorders. Mol. Biol. Rep. 2023;50(2):1663–1675. doi: 10.1007/s11033-022-08038-0. PubMed DOI PMC
Yeramilli V., Cheddadi R., Shah J., Brawner K., Martin C. A Review of the impact of maternal prenatal stress on offspring microbiota and metabolites. Metabolites. 2023;13(4):535. doi: 10.3390/metabo13040535. PubMed DOI PMC
Mepham J., McGee N.T., Andrews K., Gonzalez A. Exploring the effect of prenatal maternal stress on the microbiomes of mothers and infants: A systematic review. Dev. Psychobiol. 2023;65(7):e22424. doi: 10.1002/dev.22424. PubMed DOI
Yang H., Guo R., Li S., Liang F., Tian C., Zhao X., Long Y., Liu F., Jiang M., Zhang Y., Ma J., Peng M., Zhang S., Ye W., Gan Q., Zeng F., Mao S., Liang Q., Ma X., Han M., Gao F., Yang R., Zhang C., Xiao L., Qin J., Li S., Zhu C. Systematic analysis of gut microbiota in pregnant women and its correlations with individual heterogeneity. NPJ Biofilms Microbiomes. 2020;6(1):32. doi: 10.1038/s41522-020-00142-y. PubMed DOI PMC
Gorczyca K., Obuchowska A., Trojnar K.Ż., Opoka W.M., Gorzelak L.B. Changes in the gut microbiome and pathologies in pregnancy. Int. J. Environ. Res. Public Health. 2022;19(16):9961. doi: 10.3390/ijerph19169961. PubMed DOI PMC
Srinivasan K., Satyanarayana V.A., Lukose A. Maternal mental health in pregnancy and child behavior. Indian J. Psychiatry. 2011;53(4):351–361. doi: 10.4103/0019-5545.91911. PubMed DOI PMC
Tuovinen S., Pulkkinen L.M., Girchenko P., Heinonen K., Lahti J., Reynolds R.M., Hämäläinen E., Villa P.M., Kajantie E., Laivuori H., Raikkonen K. Maternal antenatal stress and mental and behavioral disorders in their children. J. Affect. Disord. 2021;278:57–65. doi: 10.1016/j.jad.2020.09.063. PubMed DOI
Van den Bergh B.R.H., van den Heuvel M.I., Lahti M., Braeken M., de Rooij S.R., Entringer S., Hoyer D., Roseboom T., Räikkönen K., King S., Schwab M. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev. 2020;117:26–64. doi: 10.1016/j.neubiorev.2017.07.003. PubMed DOI
Sulkowska S.E.M. The impact of maternal gut microbiota during pregnancy on fetal gut-brain axis development and life-long health outcomes. Microorganisms. 2023;11(9):2199. doi: 10.3390/microorganisms11092199. PubMed DOI PMC
Rusch J.A., Layden B.T., Dugas L.R. Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis. Front. Endocrinol. 2023;14:1130689. doi: 10.3389/fendo.2023.1130689. PubMed DOI PMC
Misiak B., Łoniewski I., Marlicz W., Frydecka D., Szulc A., Rudzki L., Samochowiec J. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog. Neuropsychopharmacol. Biol. Psychiatry. 2020;102:109951. doi: 10.1016/j.pnpbp.2020.109951. PubMed DOI
Turroni F., Rizzo S.M., Ventura M., Bernasconi S. Cross-talk between the infant/maternal gut microbiota and the endocrine system: A promising topic of research. Microbiome Res Rep. 2022;1(2):14. doi: 10.20517/mrr.2021.14. PubMed DOI PMC
Garzoni L., Faure C., Frasch M.G. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: The brain-gut connection begins in utero. Front. Integr. Nuerosci. 2013;7:57. doi: 10.3389/fnint.2013.00057. PubMed DOI PMC
Zijlmans M.A.C., Korpela K., Walraven R.J.M., de Vos W.M., de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 2015;53:233–245. doi: 10.1016/j.psyneuen.2015.01.006. PubMed DOI
Gur T.L., Palkar A.V., Rajasekera T., Allen J., Niraula A., Godbout J., Bailey M.T. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav. Brain Res. 2019;359:886–894. doi: 10.1016/j.bbr.2018.06.025. PubMed DOI PMC
Silva Y.P., Bernardi A., Frozza R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 2020;11:25. doi: 10.3389/fendo.2020.00025. PubMed DOI PMC
Dalile B., Vervliet B., Bergonzelli G., Verbeke K., Oudenhove V.L. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: A randomized, placebo-controlled trial. Neuropsychopharmacology. 2020;45(13):2257–2266. doi: 10.1038/s41386-020-0732-x. PubMed DOI PMC
Zhang D., Jian Y.P., Zhang Y.N., Li Y., Gu L.T., Sun H.H., Liu M.D., Zhou H.L., Wang Y.S., Xu Z.X. Short-chain fatty acids in diseases. Cell Commun. Signal. 2023;21(1):212. doi: 10.1186/s12964-023-01219-9. PubMed DOI PMC
Chen B., Sun L., Zhang X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J. Autoimmun. 2017;83:31–42. doi: 10.1016/j.jaut.2017.03.009. PubMed DOI
Li L., Zhao S., Xiang T., Feng H., Ma L., Fu P. Epigenetic connection between gut microbiota-derived short-chain fatty acids and chromatin histone modification in kidney diseases. Chin. Med. J. 2022;135(14):1692–1694. doi: 10.1097/CM9.0000000000002295. PubMed DOI PMC
Stein R.A., Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. Microlife. 2023;4:uqad032. PubMed PMC
Woo V., Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes. 2022;14(1):2022407. doi: 10.1080/19490976.2021.2022407. PubMed DOI PMC
Yang L.L., Millischer V., Rodin S., MacFabe D.F., Villaescusa J.C., Lavebratt C. Enteric short‐chain fatty acids promote proliferation of human neural progenitor cells. J. Neurochem. 2020;154(6):635–646. doi: 10.1111/jnc.14928. PubMed DOI
Kimura I., Miyamoto J., Kitano O.R., Watanabe K., Yamada T., Onuki M., Aoki R., Isobe Y., Kashihara D., Inoue D., Inaba A., Takamura Y., Taira S., Kumaki S., Watanabe M., Ito M., Nakagawa F., Irie J., Kakuta H., Shinohara M., Iwatsuki K., Tsujimoto G., Ohno H., Arita M., Itoh H., Hase K. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science. 2020;367(6481):eaaw8429. doi: 10.1126/science.aaw8429. PubMed DOI
Liu R.T. Childhood adversities and depression in adulthood: Current findings and future directions. Clin. Psychol. Sci. Pract. 2017;24(2):140–153. doi: 10.1111/cpsp.12190. PubMed DOI PMC
Garcia-Rizo C., Bitanihirwe B.K.Y. Implications of early life stress on fetal metabolic programming of schizophrenia: A focus on epiphenomena underlying morbidity and early mortality. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2020;101:109910. doi: 10.1016/j.pnpbp.2020.109910. PubMed DOI
Kwon E.J., Kim Y.J. What is fetal programming?: A lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 2017;60(6):506–519. doi: 10.5468/ogs.2017.60.6.506. PubMed DOI PMC
Gluckma P.D., Hanson M.A. The fetal matrix. Evolution, development and disease Cambridge. UK: Cambridge Universiy Press; 2005. Predictive adaptive responses and human disease. pp. 78–102.
Zietlow A.L., Nonnenmacher N., Reck C., Ditzen B., Müller M. Emotional stress during pregnancy - Associations with maternal anxiety disorders, infant cortisol reactivity, and mother-child interaction at pre-school age. Front. Psychol. 2019;10:2179. doi: 10.3389/fpsyg.2019.02179. PubMed DOI PMC
Howerton C.L., Bale T.L. Prenatal programing: At the intersection of maternal stress and immune activation. Horm. Behav. 2012;62(3):237–242. doi: 10.1016/j.yhbeh.2012.03.007. PubMed DOI PMC
Van den Bergh B.R.H., Van Calster B., Smits T., Van Huffel S., Lagae L. Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Neuropsychopharmacology. 2008;33(3):536–545. doi: 10.1038/sj.npp.1301450. PubMed DOI
Begum N., Mandhare A., Tryphena K.P., Srivastava S., Shaikh M.F., Singh S.B., Khatri D.K. Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front. Aging Neurosci. 2022;14:1048333. doi: 10.3389/fnagi.2022.1048333. PubMed DOI PMC
Li D., Li Y., Yang S., Lu J., Jin X., Wu M. Diet-gut microbiota-epigenetics in metabolic diseases: From mechanisms to therapeutics. Biomed. Pharmacother. 2022;153:113290. doi: 10.1016/j.biopha.2022.113290. PubMed DOI
O’Riordan K.J., Collins M.K., Moloney G.M., Knox E.G., Aburto M.R., Fülling C., Morley S.J., Clarke G., Schellekens H., Cryan J.F. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol. Cell. Endocrinol. 2022;546:111572. doi: 10.1016/j.mce.2022.111572. PubMed DOI
Walker R.W., Clemente J.C., Peter I., Loos R.J.F. The prenatal gut microbiome: Are we colonized with bacteria in utero? Pediatr. Obes. 2017;2017(12 (S1)):3–17. doi: 10.1111/ijpo.12217. PubMed DOI PMC
Nuriel-Ohayon M., Neuman H., Koren O. Microbial changes during pregnancy, birth, and infancy. Front. Microbiol. 2016;7:1031. doi: 10.3389/fmicb.2016.01031. PubMed DOI PMC
Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014;6(237):237ra65. doi: 10.1126/scitranslmed.3008599. PubMed DOI PMC
Miko E., Csaszar A., Bodis J., Kovacs K. The maternal-fetal gut microbiota axis: Physiological changes, dietary influence, and modulation possibilities. Life. 2022;12(3):424. doi: 10.3390/life12030424. PubMed DOI PMC