-
Something wrong with this record ?
An isolated epileptic seizure elicits learning impairment which could be prevented by melatonin
J. Mareš, M. Pometlová, K. Deykun, D. Krýsl, R. Rokyta,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Analysis of Variance MeSH
- Antioxidants therapeutic use MeSH
- Automatism etiology prevention & control MeSH
- Maze Learning drug effects MeSH
- Time Factors MeSH
- Flurothyl toxicity MeSH
- Blood-Brain Barrier drug effects physiopathology MeSH
- Hypoxia complications MeSH
- Convulsants toxicity MeSH
- Rats MeSH
- Melatonin therapeutic use MeSH
- Disease Models, Animal MeSH
- Learning Disabilities etiology prevention & control MeSH
- Reaction Time drug effects MeSH
- Seizures chemically induced complications pathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We tested the relation between a single short tonic-clonic seizure elicited by flurothyl vapors and changes of learning in Morris water maze (MWM) in Wistar rats. Oxidative stress usually accompanies seizures. Large melatonin doses were applied immediately before and after seizures to test consequences on learning impairment. One hour of hypobaric hypoxia (8000 m) three days prior to the seizure served as an activator of intrinsic antioxidant systems. Learning in MWM (7 days) started 24 h after seizures. Following seizures, latencies in MWM were longer than in controls and were shortened by hypoxia and preventive melatonin application. Melatonin was also applied before hypoxia to influence free radical (FR) production and intrinsic antioxidant activation. Some behavioral characteristics were changed and preconditioning effect of hypoxia was reduced. Melatonin after seizure (150 s and 6 h) had negligible effect. Results allow us to hypothesize about the role of FR and the beneficial effect of melatonin on the behavioral consequences of seizures.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12034729
- 003
- CZ-PrNML
- 005
- 20161216092332.0
- 007
- ta
- 008
- 121023s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.yebeh.2011.11.018 $2 doi
- 035 __
- $a (PubMed)22341963
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mareš, Jan $u Charles University in Prague, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Czech Republic. jan.mares@lf3.cuni.cz
- 245 13
- $a An isolated epileptic seizure elicits learning impairment which could be prevented by melatonin / $c J. Mareš, M. Pometlová, K. Deykun, D. Krýsl, R. Rokyta,
- 520 9_
- $a We tested the relation between a single short tonic-clonic seizure elicited by flurothyl vapors and changes of learning in Morris water maze (MWM) in Wistar rats. Oxidative stress usually accompanies seizures. Large melatonin doses were applied immediately before and after seizures to test consequences on learning impairment. One hour of hypobaric hypoxia (8000 m) three days prior to the seizure served as an activator of intrinsic antioxidant systems. Learning in MWM (7 days) started 24 h after seizures. Following seizures, latencies in MWM were longer than in controls and were shortened by hypoxia and preventive melatonin application. Melatonin was also applied before hypoxia to influence free radical (FR) production and intrinsic antioxidant activation. Some behavioral characteristics were changed and preconditioning effect of hypoxia was reduced. Melatonin after seizure (150 s and 6 h) had negligible effect. Results allow us to hypothesize about the role of FR and the beneficial effect of melatonin on the behavioral consequences of seizures.
- 650 _2
- $a analýza rozptylu $7 D000704
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a hypoxie $x komplikace $7 D000860
- 650 _2
- $a antioxidancia $x terapeutické užití $7 D000975
- 650 _2
- $a automatismus $x etiologie $x prevence a kontrola $7 D001332
- 650 _2
- $a hematoencefalická bariéra $x účinky léků $x patofyziologie $7 D001812
- 650 _2
- $a konvulziva $x toxicita $7 D003292
- 650 _2
- $a modely nemocí na zvířatech $7 D004195
- 650 _2
- $a flurothyl $x toxicita $7 D005481
- 650 _2
- $a poruchy učení $x etiologie $x prevence a kontrola $7 D007859
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a bludiště - učení $x účinky léků $7 D018782
- 650 _2
- $a melatonin $x terapeutické užití $7 D008550
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a reakční čas $x účinky léků $7 D011930
- 650 _2
- $a záchvaty $x chemicky indukované $x komplikace $x patologie $7 D012640
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pometlová, Marie
- 700 1_
- $a Deykun, Kateryna
- 700 1_
- $a Krýsl, David, $d 1977- $7 xx0078579
- 700 1_
- $a Rokyta, Richard
- 773 0_
- $w MED00005701 $t Epilepsy & behavior E&B $x 1525-5069 $g Roč. 23, č. 3 (2012), s. 199-204
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22341963 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20121023 $b ABA008
- 991 __
- $a 20161216092352 $b ABA008
- 999 __
- $a ok $b bmc $g 956739 $s 792226
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 23 $c 3 $d 199-204 $i 1525-5069 $m Epilepsy & behavior $n Epilepsy Behav $x MED00005701
- LZP __
- $a Pubmed-20121023