• Something wrong with this record ?

Empirical evidence of the applicability of functional clustering through gene expression classification

M. Krejník, J. Kléma,

. 2012 ; 9 (3) : 788-98.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

The availability of a great range of prior biological knowledge about the roles and functions of genes and gene-gene interactions allows us to simplify the analysis of gene expression data to make it more robust, compact, and interpretable. Here, we objectively analyze the applicability of functional clustering for the identification of groups of functionally related genes. The analysis is performed in terms of gene expression classification and uses predictive accuracy as an unbiased performance measure. Features of biological samples that originally corresponded to genes are replaced by features that correspond to the centroids of the gene clusters and are then used for classifier learning. Using 10 benchmark data sets, we demonstrate that functional clustering significantly outperforms random clustering without biological relevance. We also show that functional clustering performs comparably to gene expression clustering, which groups genes according to the similarity of their expression profiles. Finally, the suitability of functional clustering as a feature extraction technique is evaluated and discussed.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12034768
003      
CZ-PrNML
005      
20130611102039.0
007      
ta
008      
121023s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1109/tcbb.2012.23 $2 doi
035    __
$a (PubMed)22291159
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Krejník, Milos $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague 6, Czech Republic. krejnmi1@fel.cvut.cz
245    10
$a Empirical evidence of the applicability of functional clustering through gene expression classification / $c M. Krejník, J. Kléma,
520    9_
$a The availability of a great range of prior biological knowledge about the roles and functions of genes and gene-gene interactions allows us to simplify the analysis of gene expression data to make it more robust, compact, and interpretable. Here, we objectively analyze the applicability of functional clustering for the identification of groups of functionally related genes. The analysis is performed in terms of gene expression classification and uses predictive accuracy as an unbiased performance measure. Features of biological samples that originally corresponded to genes are replaced by features that correspond to the centroids of the gene clusters and are then used for classifier learning. Using 10 benchmark data sets, we demonstrate that functional clustering significantly outperforms random clustering without biological relevance. We also show that functional clustering performs comparably to gene expression clustering, which groups genes according to the similarity of their expression profiles. Finally, the suitability of functional clustering as a feature extraction technique is evaluated and discussed.
650    _2
$a algoritmy $7 D000465
650    _2
$a shluková analýza $7 D016000
650    _2
$a databáze genetické $7 D030541
650    _2
$a exprese genu $7 D015870
650    _2
$a stanovení celkové genové exprese $x metody $7 D020869
650    _2
$a rozpoznávání automatizované $7 D010363
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kléma, Jirí
773    0_
$w MED00181431 $t IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM $x 1557-9964 $g Roč. 9, č. 3 (2012), s. 788-98
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22291159 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a
990    __
$a 20121023 $b ABA008
991    __
$a 20130611102421 $b ABA008
999    __
$a ok $b bmc $g 956778 $s 792265
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 9 $c 3 $d 788-98 $i 1557-9964 $m IEEE/ACM transactions on computational biology and bioinformatics $n IEEE/ACM Trans Comput Biol Bioinform $x MED00181431
LZP    __
$a Pubmed-20121023

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...