-
Something wrong with this record ?
Facial symmetry in robust anthropometrics
J. Kalina,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Medline Complete (EBSCOhost)
from 2006-01-01 to 1 year ago
Wiley Online Library (archiv)
from 2006-01-01 to 2012-12-31
- MeSH
- Adult MeSH
- Humans MeSH
- Linear Models MeSH
- Adolescent MeSH
- Young Adult MeSH
- Face anatomy & histology MeSH
- Image Processing, Computer-Assisted MeSH
- Forensic Anthropology MeSH
- Models, Statistical MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic anthropology.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12034840
- 003
- CZ-PrNML
- 005
- 20121112132140.0
- 007
- ta
- 008
- 121023s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/j.1556-4029.2011.02000.x $2 doi
- 035 __
- $a (PubMed)22150845
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kalina, Jan $u Center of Biomedical Informatics, Institute of Computer Science AS CR, Pod Vodárenskou věží 2, 182 07 Praha 8, Czech Republic. kalina@euromise.cz
- 245 10
- $a Facial symmetry in robust anthropometrics / $c J. Kalina,
- 520 9_
- $a Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic anthropology.
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a obličej $x anatomie a histologie $7 D005145
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a soudní antropologie $7 D018732
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a lineární modely $7 D016014
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 773 0_
- $w MED00002685 $t Journal of forensic sciences $x 1556-4029 $g Roč. 57, č. 3 (2012), s. 691-8
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22150845 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a
- 990 __
- $a 20121023 $b ABA008
- 991 __
- $a 20121112132154 $b ABA008
- 999 __
- $a ok $b bmc $g 956850 $s 792337
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 57 $c 3 $d 691-8 $i 1556-4029 $m Journal of forensic sciences $n J Forensic Sci $x MED00002685
- LZP __
- $a Pubmed-20121023