• Je něco špatně v tomto záznamu ?

Functional species pool framework to test for biotic effects on community assembly

F. de Bello, JN. Price, T. Münkemüller, J. Liira, M. Zobel, W. Thuiller, P. Gerhold, L. Götzenberger, S. Lavergne, J. Leps, K. Zobel, M. Pärtel,

. 2012 ; 93 (10) : 2263-73.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13000576

Functional trait differences among species are increasingly used to infer the effects of biotic and abiotic processes on species coexistence. Commonly, the trait diversity observed within communities is compared to patterns simulated in randomly generated communities based on sampling within a region. The resulting patterns of trait convergence and divergence are assumed to reveal abiotic and biotic processes, respectively. However, biotic processes such as competition can produce both trait divergence and convergence, through either excluding similar species (niche differences, divergence) or excluding dissimilar species (weaker competitor exclusion, convergence). Hence, separating biotic and abiotic processes that can produce identical patterns of trait diversity, or even patterns that neutralize each other, is not feasible with previous methods. We propose an operational framework in which the functional trait dissimilarity within communities (FDcomm) is compared to the corresponding trait dissimilarity expected from the species pool (i.e., functional species pool diversity, FDpool). FDpool includes the set of potential species for a site delimited by the operating environmental and dispersal limitation filters. By applying these filters, the resulting pattern of trait diversity is consistent with biotic processes, i.e., trait divergence (FDcomm > FDpool) indicates niche differentiation, while trait convergence (FDcomm < FDpool) indicates weaker competitor exclusion. To illustrate this framework, with its potential application and constraints, we analyzed both simulated and field data. The functional species pool framework more consistently detected the simulated trait diversity patterns than previous approaches. In the field, using data from plant communities of typical Northern European habitats in Estonia, we found that both niche-based and weaker competitor exclusion influenced community assembly, depending on the traits and community considered. In both simulated and field data, we demonstrated that only by estimating the species pool of a site is it possible to differentiate the patterns of trait dissimilarity produced by operating biotic processes. The framework, which can be applied with both functional and phylogenetic diversity, enables a reinterpretation of community assembly processes. Solving the challenge of defining an appropriate reference species pool for a site can provide a better understanding of community assembly.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13000576
003      
CZ-PrNML
005      
20130109115202.0
007      
ta
008      
130108s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1890/11-1394.1 $2 doi
035    __
$a (PubMed)23185887
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a de Bello, Francesco $u Institute of Botany, Czech Academy of Sciences, Dukelská 135 37982 Trebon, Czech Republic. fradebello@ctfc.es
245    10
$a Functional species pool framework to test for biotic effects on community assembly / $c F. de Bello, JN. Price, T. Münkemüller, J. Liira, M. Zobel, W. Thuiller, P. Gerhold, L. Götzenberger, S. Lavergne, J. Leps, K. Zobel, M. Pärtel,
520    9_
$a Functional trait differences among species are increasingly used to infer the effects of biotic and abiotic processes on species coexistence. Commonly, the trait diversity observed within communities is compared to patterns simulated in randomly generated communities based on sampling within a region. The resulting patterns of trait convergence and divergence are assumed to reveal abiotic and biotic processes, respectively. However, biotic processes such as competition can produce both trait divergence and convergence, through either excluding similar species (niche differences, divergence) or excluding dissimilar species (weaker competitor exclusion, convergence). Hence, separating biotic and abiotic processes that can produce identical patterns of trait diversity, or even patterns that neutralize each other, is not feasible with previous methods. We propose an operational framework in which the functional trait dissimilarity within communities (FDcomm) is compared to the corresponding trait dissimilarity expected from the species pool (i.e., functional species pool diversity, FDpool). FDpool includes the set of potential species for a site delimited by the operating environmental and dispersal limitation filters. By applying these filters, the resulting pattern of trait diversity is consistent with biotic processes, i.e., trait divergence (FDcomm > FDpool) indicates niche differentiation, while trait convergence (FDcomm < FDpool) indicates weaker competitor exclusion. To illustrate this framework, with its potential application and constraints, we analyzed both simulated and field data. The functional species pool framework more consistently detected the simulated trait diversity patterns than previous approaches. In the field, using data from plant communities of typical Northern European habitats in Estonia, we found that both niche-based and weaker competitor exclusion influenced community assembly, depending on the traits and community considered. In both simulated and field data, we demonstrated that only by estimating the species pool of a site is it possible to differentiate the patterns of trait dissimilarity produced by operating biotic processes. The framework, which can be applied with both functional and phylogenetic diversity, enables a reinterpretation of community assembly processes. Solving the challenge of defining an appropriate reference species pool for a site can provide a better understanding of community assembly.
650    _2
$a zvířata $7 D000818
650    _2
$a ekosystém $7 D017753
650    _2
$a biologické modely $7 D008954
650    _2
$a fyziologie rostlin $7 D018521
650    _2
$a rostliny $x klasifikace $7 D010944
650    _2
$a druhová specificita $7 D013045
651    _2
$a Estonsko $7 D004957
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Price, Jodi N
700    1_
$a Münkemüller, Tamara
700    1_
$a Liira, Jaan
700    1_
$a Zobel, Martin
700    1_
$a Thuiller, Wilfried
700    1_
$a Gerhold, Pille
700    1_
$a Götzenberger, Lars
700    1_
$a Lavergne, Sébastien
700    1_
$a Leps, Jan
700    1_
$a Zobel, Kristjan
700    1_
$a Pärtel, Meelis
773    0_
$w MED00001475 $t Ecology $x 0012-9658 $g Roč. 93, č. 10 (2012), s. 2263-73
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23185887 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130108 $b ABA008
991    __
$a 20130109115307 $b ABA008
999    __
$a ok $b bmc $g 963358 $s 798740
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 93 $c 10 $d 2263-73 $i 0012-9658 $m Ecology $n Ecology $x MED00001475
LZP    __
$a Pubmed-20130108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...