-
Je něco špatně v tomto záznamu ?
Force-field dependence of chignolin folding and misfolding: comparison with experiment and redesign
P. Kührová, A. De Simone, M. Otyepka, RB. Best,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
NLK
Cell Press Free Archives
od 1960-01-01 do Před 1 rokem
Free Medical Journals
od 1960 do Před 1 rokem
Freely Accessible Science Journals
od 1960 do Před 12 měsíci
PubMed Central
od 1960 do Před 1 rokem
Europe PubMed Central
od 1960 do Před 1 rokem
Open Access Digital Library
od 1960-09-01
- MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- oligopeptidy chemie MeSH
- sbalování proteinů MeSH
- sekundární struktura proteinů MeSH
- simulace molekulární dynamiky MeSH
- software MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
We study the folding of the designed hairpin chignolin, using simulations with four different force fields. Interestingly, we find a misfolded, out-of-register, structure comprising 20-50% of the ordered structures with three force fields, but not with a fourth. A defining feature of the misfold is that Gly-7 adopts a β(PR) conformation rather than α(L). By reweighting, we show that differences between the force fields can mostly be attributed to differences in glycine properties. Benchmarking against NMR data suggests that the preference for β(PR) is not a force-field artifact. For chignolin, we show that including the misfold in the ensemble results in back-recalculated NMR observables in slightly better agreement with experiment than parameters calculated from a folded ensemble only. For comparison, we show by NMR and circular dichroism spectroscopy that the G7K mutant of chignolin, in which formation of this misfold is impossible, is well folded with stability similar to the wild-type and does not populate the misfolded state in simulation. Our results highlight the complexity of interpreting NMR data for small, weakly structured, peptides in solution, as well as the importance of accurate glycine parameters in force fields, for a correct description of turn structures.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13000675
- 003
- CZ-PrNML
- 005
- 20130109104543.0
- 007
- ta
- 008
- 130108s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bpj.2012.03.024 $2 doi
- 035 __
- $a (PubMed)22768946
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kührová, Petra $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic.
- 245 10
- $a Force-field dependence of chignolin folding and misfolding: comparison with experiment and redesign / $c P. Kührová, A. De Simone, M. Otyepka, RB. Best,
- 520 9_
- $a We study the folding of the designed hairpin chignolin, using simulations with four different force fields. Interestingly, we find a misfolded, out-of-register, structure comprising 20-50% of the ordered structures with three force fields, but not with a fourth. A defining feature of the misfold is that Gly-7 adopts a β(PR) conformation rather than α(L). By reweighting, we show that differences between the force fields can mostly be attributed to differences in glycine properties. Benchmarking against NMR data suggests that the preference for β(PR) is not a force-field artifact. For chignolin, we show that including the misfold in the ensemble results in back-recalculated NMR observables in slightly better agreement with experiment than parameters calculated from a folded ensemble only. For comparison, we show by NMR and circular dichroism spectroscopy that the G7K mutant of chignolin, in which formation of this misfold is impossible, is well folded with stability similar to the wild-type and does not populate the misfolded state in simulation. Our results highlight the complexity of interpreting NMR data for small, weakly structured, peptides in solution, as well as the importance of accurate glycine parameters in force fields, for a correct description of turn structures.
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a nukleární magnetická rezonance biomolekulární $7 D019906
- 650 _2
- $a oligopeptidy $x chemie $7 D009842
- 650 _2
- $a sbalování proteinů $7 D017510
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 _2
- $a software $7 D012984
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a De Simone, Alfonso
- 700 1_
- $a Otyepka, Michal
- 700 1_
- $a Best, Robert B
- 773 0_
- $w MED00000774 $t Biophysical journal $x 1542-0086 $g Roč. 102, č. 8 (2012), s. 1897-906
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22768946 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130108 $b ABA008
- 991 __
- $a 20130109104648 $b ABA008
- 999 __
- $a ok $b bmc $g 963457 $s 798839
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 102 $c 8 $d 1897-906 $i 1542-0086 $m Biophysical journal $n Biophys J $x MED00000774
- LZP __
- $a Pubmed-20130108