-
Je něco špatně v tomto záznamu ?
Retinal image analysis aimed at blood vessel tree segmentation and early detection of neural-layer deterioration
J. Jan, J. Odstrcilik, J. Gazarek, R. Kolar,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- fluoresceinová angiografie metody MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- nemoci zrakového nervu patologie MeSH
- nervová síť patologie MeSH
- reprodukovatelnost výsledků MeSH
- retinální cévy patologie MeSH
- retinoskopie metody MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
An automatic method of segmenting the retinal vessel tree and estimating status of retinal neural fibre layer (NFL) from high resolution fundus camera images is presented. First, reliable blood vessel segmentation, using 2D directional matched filtering, enables to remove areas occluded by blood vessels thus leaving remaining retinal area available to the following NFL detection. The local existence of rather faint and hardly visible NFL is detected by combining several newly designed local textural features, sensitive to subtle NFL characteristics, into feature vectors submitted to a trained neural-network classifier. Obtained binary retinal maps of NFL distribution show a good agreement with both medical expert evaluations and quantitative results obtained by optical coherence tomography.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13000776
- 003
- CZ-PrNML
- 005
- 20130109112443.0
- 007
- ta
- 008
- 130108s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.compmedimag.2012.04.006 $2 doi
- 035 __
- $a (PubMed)22640597
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Jan, J $u Department of Biomedical Engineering FEEC, Brno University of Technology, Kolejní 4, 61200 Brno, Czech Republic. jan@feec.vutbr.cz
- 245 10
- $a Retinal image analysis aimed at blood vessel tree segmentation and early detection of neural-layer deterioration / $c J. Jan, J. Odstrcilik, J. Gazarek, R. Kolar,
- 520 9_
- $a An automatic method of segmenting the retinal vessel tree and estimating status of retinal neural fibre layer (NFL) from high resolution fundus camera images is presented. First, reliable blood vessel segmentation, using 2D directional matched filtering, enables to remove areas occluded by blood vessels thus leaving remaining retinal area available to the following NFL detection. The local existence of rather faint and hardly visible NFL is detected by combining several newly designed local textural features, sensitive to subtle NFL characteristics, into feature vectors submitted to a trained neural-network classifier. Obtained binary retinal maps of NFL distribution show a good agreement with both medical expert evaluations and quantitative results obtained by optical coherence tomography.
- 650 _2
- $a fluoresceinová angiografie $x metody $7 D005451
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a nervová síť $x patologie $7 D009415
- 650 _2
- $a nemoci zrakového nervu $x patologie $7 D009901
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a retinální cévy $x patologie $7 D012171
- 650 _2
- $a retinoskopie $x metody $7 D042262
- 650 _2
- $a senzitivita a specificita $7 D012680
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Odstrcilik, J
- 700 1_
- $a Gazarek, J
- 700 1_
- $a Kolar, R
- 773 0_
- $w MED00001216 $t Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society $x 1879-0771 $g Roč. 36, č. 6 (2012), s. 431-41
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22640597 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130108 $b ABA008
- 991 __
- $a 20130109112548 $b ABA008
- 999 __
- $a ok $b bmc $g 963558 $s 798940
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 36 $c 6 $d 431-41 $i 1879-0771 $m Computerized medical imaging and graphics $n Comput Med Imaging Graph $x MED00001216
- LZP __
- $a Pubmed-20130108