-
Je něco špatně v tomto záznamu ?
Application of optimized pattern recognition units in EEG analysis: common optimization of preprocessing and weights of neural networks as well as structure optimization
H. Witte, A. Doering, M. Galicki, J. Dorschel, V. Krajca, M. Eiselt
Jazyk angličtina Země Kanada
Grantová podpora
IZ1804
MZ0
CEP - Centrální evidence projektů
PubMed
8591340
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- elektroencefalografie * MeSH
- epilepsie diagnóza patofyziologie MeSH
- fuzzy logika MeSH
- lidé MeSH
- neuronové sítě * MeSH
- novorozenec MeSH
- rozpoznávání automatizované * MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
The main goal of this study is to demonstrate the possibility of training the Neural Network (multilayer perceptron) classifier and preprocessing units simultaneously, i.e., that properties of preprocessing are chosen automatically during the training phase. In the first realization step, adaptive recursive estimation of the power within a frequency band was used as a preprocessing unit. To improve the efficiency of special units, the power and momentary frequency estimation was replaced by methods that are based on adaptive Hilbert transformers. The strategy was developed to obtain optimized recognition units that can be efficiently integrated into strategies for monitoring the cerebral status of neonates. Therefore, applications (e.g., in neonatal EEG pattern recognition) will be shown. Additionally, a method of minimizing the error function was used, where this minimization is based on optimizing the network structure. The results of structure optimization in the field of EEG pattern recognition in epileptic patients can be demonstrated.
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13012222
- 003
- CZ-PrNML
- 005
- 20130405141429.0
- 007
- ta
- 008
- 130404s1995 xxc f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)8591340
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xxc
- 100 1_
- $a Witte H $u Institute of Medical Statistics, Computer Sciences and Documentation, Friedrich Schiller University Jena, D-07740 Jena, Germany.
- 245 10
- $a Application of optimized pattern recognition units in EEG analysis: common optimization of preprocessing and weights of neural networks as well as structure optimization / $c H. Witte, A. Doering, M. Galicki, J. Dorschel, V. Krajca, M. Eiselt
- 504 __
- $a Literatura
- 520 9_
- $a The main goal of this study is to demonstrate the possibility of training the Neural Network (multilayer perceptron) classifier and preprocessing units simultaneously, i.e., that properties of preprocessing are chosen automatically during the training phase. In the first realization step, adaptive recursive estimation of the power within a frequency band was used as a preprocessing unit. To improve the efficiency of special units, the power and momentary frequency estimation was replaced by methods that are based on adaptive Hilbert transformers. The strategy was developed to obtain optimized recognition units that can be efficiently integrated into strategies for monitoring the cerebral status of neonates. Therefore, applications (e.g., in neonatal EEG pattern recognition) will be shown. Additionally, a method of minimizing the error function was used, where this minimization is based on optimizing the network structure. The results of structure optimization in the field of EEG pattern recognition in epileptic patients can be demonstrated.
- 590 __
- $a bohemika - dle Pubmed
- 650 02
- $a algoritmy $7 D000465
- 650 12
- $a elektroencefalografie $7 D004569
- 650 02
- $a epilepsie $x diagnóza $x patofyziologie $7 D004827
- 650 02
- $a fuzzy logika $7 D017143
- 650 02
- $a lidé $7 D006801
- 650 02
- $a novorozenec $7 D007231
- 650 12
- $a neuronové sítě $7 D016571
- 650 12
- $a rozpoznávání automatizované $7 D010363
- 700 1_
- $a Doering A
- 700 1_
- $a Galicki M
- 700 1_
- $a Dorschel J
- 700 1_
- $a Krajča, Vladimír, $d 1955- $7 xx0054493 $u Faculty Hospital Bulovka, Department of Neurology, Czech Republic
- 700 1_
- $a Eiselt M
- 773 0_
- $t Medinfo $g č. 8 Pt 1 (1995), s. 833-837 $p Medinfo $x def $w MED00059201
- 910 __
- $a ABA008 $y 3 $z 0
- 990 __
- $a 20130404152150 $b ABA008
- 991 __
- $a 20130405141655 $b ABA008
- 999 __
- $a ok $b bmc $g 975220 $s 810502
- BAS __
- $a 3
- BMC __
- $a 1995 $c 8 Pt 1 $d 833-837 $m MEDINFO $x MED00059201
- GRA __
- $a IZ1804 $p MZ0
- LZP __
- $a NLK 2013-04/lpbo