Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Application of optimized pattern recognition units in EEG analysis: common optimization of preprocessing and weights of neural networks as well as structure optimization

H. Witte, A. Doering, M. Galicki, J. Dorschel, V. Krajca, M. Eiselt

. 1995 ; (8 Pt 1) : 833-837.

Jazyk angličtina Země Kanada

Perzistentní odkaz   https://www.medvik.cz/link/bmc13012222

Grantová podpora
IZ1804 MZ0 CEP - Centrální evidence projektů

The main goal of this study is to demonstrate the possibility of training the Neural Network (multilayer perceptron) classifier and preprocessing units simultaneously, i.e., that properties of preprocessing are chosen automatically during the training phase. In the first realization step, adaptive recursive estimation of the power within a frequency band was used as a preprocessing unit. To improve the efficiency of special units, the power and momentary frequency estimation was replaced by methods that are based on adaptive Hilbert transformers. The strategy was developed to obtain optimized recognition units that can be efficiently integrated into strategies for monitoring the cerebral status of neonates. Therefore, applications (e.g., in neonatal EEG pattern recognition) will be shown. Additionally, a method of minimizing the error function was used, where this minimization is based on optimizing the network structure. The results of structure optimization in the field of EEG pattern recognition in epileptic patients can be demonstrated.

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc13012222
003      
CZ-PrNML
005      
20130405141429.0
007      
ta
008      
130404s1995 xxc f 000 0|eng||
009      
AR
035    __
$a (PubMed)8591340
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xxc
100    1_
$a Witte H $u Institute of Medical Statistics, Computer Sciences and Documentation, Friedrich Schiller University Jena, D-07740 Jena, Germany.
245    10
$a Application of optimized pattern recognition units in EEG analysis: common optimization of preprocessing and weights of neural networks as well as structure optimization / $c H. Witte, A. Doering, M. Galicki, J. Dorschel, V. Krajca, M. Eiselt
504    __
$a Literatura
520    9_
$a The main goal of this study is to demonstrate the possibility of training the Neural Network (multilayer perceptron) classifier and preprocessing units simultaneously, i.e., that properties of preprocessing are chosen automatically during the training phase. In the first realization step, adaptive recursive estimation of the power within a frequency band was used as a preprocessing unit. To improve the efficiency of special units, the power and momentary frequency estimation was replaced by methods that are based on adaptive Hilbert transformers. The strategy was developed to obtain optimized recognition units that can be efficiently integrated into strategies for monitoring the cerebral status of neonates. Therefore, applications (e.g., in neonatal EEG pattern recognition) will be shown. Additionally, a method of minimizing the error function was used, where this minimization is based on optimizing the network structure. The results of structure optimization in the field of EEG pattern recognition in epileptic patients can be demonstrated.
590    __
$a bohemika - dle Pubmed
650    02
$a algoritmy $7 D000465
650    12
$a elektroencefalografie $7 D004569
650    02
$a epilepsie $x diagnóza $x patofyziologie $7 D004827
650    02
$a fuzzy logika $7 D017143
650    02
$a lidé $7 D006801
650    02
$a novorozenec $7 D007231
650    12
$a neuronové sítě $7 D016571
650    12
$a rozpoznávání automatizované $7 D010363
700    1_
$a Doering A
700    1_
$a Galicki M
700    1_
$a Dorschel J
700    1_
$a Krajča, Vladimír, $d 1955- $7 xx0054493 $u Faculty Hospital Bulovka, Department of Neurology, Czech Republic
700    1_
$a Eiselt M
773    0_
$t Medinfo $g č. 8 Pt 1 (1995), s. 833-837 $p Medinfo $x def $w MED00059201
910    __
$a ABA008 $y 3 $z 0
990    __
$a 20130404152150 $b ABA008
991    __
$a 20130405141655 $b ABA008
999    __
$a ok $b bmc $g 975220 $s 810502
BAS    __
$a 3
BMC    __
$a 1995 $c 8 Pt 1 $d 833-837 $m MEDINFO $x MED00059201
GRA    __
$a IZ1804 $p MZ0
LZP    __
$a NLK 2013-04/lpbo

Najít záznam

Citační ukazatele

Nahrávání dat ...