• Something wrong with this record ?

Analysis of fMRI time-series by entropy measures

P. Mikoláš, J. Vyhnánek, A. Škoch, J. Horáček,

. 2012 ; 33 (5) : 471-476.

Language English Country Sweden

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Grant support
NT13843 MZ0 CEP Register

Entropy is a measure of information content or complexity. Information-theoretic modeling has been successfully used in various biological data analyses including functional magnetic resonance (fMRI). Several studies have tested and evaluated entropy measures on simulated datasets and real fMRI data. The efficiency of entropy algorithms has been compared to classical methods based on the linear model. Here we explain and summarize entropy algorithms that have been used in fMRI analysis, their advantages over classical methods and their potential use in event-related and block design fMRI.

000      
00000naa a2200000 a 4500
001      
bmc13012386
003      
CZ-PrNML
005      
20181029121035.0
007      
ta
008      
130404s2012 sw f 000 0|eng||
009      
AR
035    __
$a (PubMed)23090262
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sw
100    1_
$a Mikoláš, Pavol $u Prague Psychiatric Centre, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic. mikolas@pcp.lf3.cuni.cz $7 xx0192056
245    10
$a Analysis of fMRI time-series by entropy measures / $c P. Mikoláš, J. Vyhnánek, A. Škoch, J. Horáček,
520    9_
$a Entropy is a measure of information content or complexity. Information-theoretic modeling has been successfully used in various biological data analyses including functional magnetic resonance (fMRI). Several studies have tested and evaluated entropy measures on simulated datasets and real fMRI data. The efficiency of entropy algorithms has been compared to classical methods based on the linear model. Here we explain and summarize entropy algorithms that have been used in fMRI analysis, their advantages over classical methods and their potential use in event-related and block design fMRI.
650    12
$a algoritmy $7 D000465
650    _2
$a mozek $x fyziologie $7 D001921
650    12
$a entropie $7 D019277
650    _2
$a lidé $7 D006801
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    12
$a modely neurologické $7 D008959
650    _2
$a poměr signál - šum $7 D059629
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Vyhnánek, Jan $u -
700    1_
$a Škoch, Antonín, $u - $d 1976- $7 xx0071615
700    1_
$a Horáček, Jiří, $u - $d 1966- $7 jo2002152353
773    0_
$w MED00168352 $t Neuro endocrinology letters $x 0172-780X $g Roč. 33, č. 5 (2012), s. 471-476
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23090262 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130404 $b ABA008
991    __
$a 20181029121550 $b ABA008
999    __
$a ok $b bmc $g 975584 $s 810667
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 33 $c 5 $d 471-476 $i 0172-780X $m Neuro-endocrinology letters $n Neuro-endocrinol. lett. $x MED00168352
GRA    __
$a NT13843 $p MZ0
LZP    __
$a Pubmed-20130404

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...