-
Je něco špatně v tomto záznamu ?
Automatic identification of significant graphoelements in multichannel EEG recordings by adaptive segmentation and fuzzy clustering
V Krajca, S Petranek, I Patakova, A Varri
Jazyk angličtina Země Anglie, Velká Británie
Grantová podpora
IZ593
MZ0
CEP - Centrální evidence projektů
- MeSH
- algoritmy MeSH
- biologické modely MeSH
- elektroencefalografie * MeSH
- epilepsie diagnóza MeSH
- lidé MeSH
- počítačové zpracování signálu * MeSH
- referenční hodnoty MeSH
- shluková analýza MeSH
- software MeSH
- Check Tag
- lidé MeSH
A new approach to visual evaluation of long-term EEG recordings is proposed. The method is based on multichannel adaptive segmentation, subsequent feature extraction, automatic classification of the acquired segments by fuzzy cluster analysis (fuzzy c-means algorithm), and on the distinguishing of thus identified EEG segments by colour directly in the EEG record. The black and white variant of the described automatic system is presented. The method was evaluated by applying it to simulated artificial data and to real EEG recordings; some of the illustrative results are shown. In addition, the performance of this system is evaluated and the first experience with its application to routine EEG recordings is discussed.
Citace poskytuje Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13015480
- 003
- CZ-PrNML
- 005
- 20130429100844.0
- 007
- ta
- 008
- 130423s1991 enkd f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/0020-7101(91)90028-d $2 doi
- 035 __
- $a (PubMed)1889908
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Krajča, Vladimír, $d 1955- $7 xx0054493 $u Faculty Hospital Bulovka, Department of Neurology, Praha, CSFR.
- 245 10
- $a Automatic identification of significant graphoelements in multichannel EEG recordings by adaptive segmentation and fuzzy clustering / $c V Krajca, S Petranek, I Patakova, A Varri
- 504 __
- $a Literatura
- 520 9_
- $a A new approach to visual evaluation of long-term EEG recordings is proposed. The method is based on multichannel adaptive segmentation, subsequent feature extraction, automatic classification of the acquired segments by fuzzy cluster analysis (fuzzy c-means algorithm), and on the distinguishing of thus identified EEG segments by colour directly in the EEG record. The black and white variant of the described automatic system is presented. The method was evaluated by applying it to simulated artificial data and to real EEG recordings; some of the illustrative results are shown. In addition, the performance of this system is evaluated and the first experience with its application to routine EEG recordings is discussed.
- 590 __
- $a bohemika - dle Pubmed
- 650 02
- $a algoritmy $7 D000465
- 650 02
- $a shluková analýza $7 D016000
- 650 12
- $a elektroencefalografie $7 D004569
- 650 02
- $a epilepsie $x diagnóza $7 D004827
- 650 02
- $a lidé $7 D006801
- 650 02
- $a biologické modely $7 D008954
- 650 02
- $a referenční hodnoty $7 D012016
- 650 12
- $a počítačové zpracování signálu $7 D012815
- 650 02
- $a software $7 D012984
- 700 1_
- $a Petránek, Svojmil, $d 1948- $7 xx0102444
- 700 1_
- $a Patáková, Ivana
- 700 1_
- $a Varri, Alpo
- 773 0_
- $t International Journal of Bio-Medical Computing $x 0020-7101 $g Roč. 28, č. 1-2 (1991), s. 71-89 $p Int J Biomed Comput $w MED00002293
- 773 0_
- $p Int J Biomed Comput $g 28(1-2):71-89, 1991 May-Jun $x 0020-7101
- 910 __
- $a ABA008 $y 3 $z 0
- 990 __
- $a 20130423104028 $b ABA008
- 991 __
- $a 20130429101134 $b ABA008
- 999 __
- $a ok $b bmc $g 978682 $s 813797
- BAS __
- $a 3
- BMC __
- $a 1991 $b 28 $c 1-2 $d 71-89 $i 0020-7101 $m International journal of bio-medical computing $x MED00002293
- GRA __
- $a IZ593 $p MZ0
- LZP __
- $a 2013-04/ewbo