• Je něco špatně v tomto záznamu ?

Automatic identification of significant graphoelements in multichannel EEG recordings by adaptive segmentation and fuzzy clustering

V Krajca, S Petranek, I Patakova, A Varri

. 1991 ; 28 (1-2) : 71-89.

Jazyk angličtina Země Anglie, Velká Británie

Perzistentní odkaz   https://www.medvik.cz/link/bmc13015480

Grantová podpora
IZ593 MZ0 CEP - Centrální evidence projektů

A new approach to visual evaluation of long-term EEG recordings is proposed. The method is based on multichannel adaptive segmentation, subsequent feature extraction, automatic classification of the acquired segments by fuzzy cluster analysis (fuzzy c-means algorithm), and on the distinguishing of thus identified EEG segments by colour directly in the EEG record. The black and white variant of the described automatic system is presented. The method was evaluated by applying it to simulated artificial data and to real EEG recordings; some of the illustrative results are shown. In addition, the performance of this system is evaluated and the first experience with its application to routine EEG recordings is discussed.

Citace poskytuje Crossref.org

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc13015480
003      
CZ-PrNML
005      
20130429100844.0
007      
ta
008      
130423s1991 enkd f 000 0|eng||
009      
AR
024    7_
$a 10.1016/0020-7101(91)90028-d $2 doi
035    __
$a (PubMed)1889908
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a enk
100    1_
$a Krajča, Vladimír, $d 1955- $7 xx0054493 $u Faculty Hospital Bulovka, Department of Neurology, Praha, CSFR.
245    10
$a Automatic identification of significant graphoelements in multichannel EEG recordings by adaptive segmentation and fuzzy clustering / $c V Krajca, S Petranek, I Patakova, A Varri
504    __
$a Literatura
520    9_
$a A new approach to visual evaluation of long-term EEG recordings is proposed. The method is based on multichannel adaptive segmentation, subsequent feature extraction, automatic classification of the acquired segments by fuzzy cluster analysis (fuzzy c-means algorithm), and on the distinguishing of thus identified EEG segments by colour directly in the EEG record. The black and white variant of the described automatic system is presented. The method was evaluated by applying it to simulated artificial data and to real EEG recordings; some of the illustrative results are shown. In addition, the performance of this system is evaluated and the first experience with its application to routine EEG recordings is discussed.
590    __
$a bohemika - dle Pubmed
650    02
$a algoritmy $7 D000465
650    02
$a shluková analýza $7 D016000
650    12
$a elektroencefalografie $7 D004569
650    02
$a epilepsie $x diagnóza $7 D004827
650    02
$a lidé $7 D006801
650    02
$a biologické modely $7 D008954
650    02
$a referenční hodnoty $7 D012016
650    12
$a počítačové zpracování signálu $7 D012815
650    02
$a software $7 D012984
700    1_
$a Petránek, Svojmil, $d 1948- $7 xx0102444
700    1_
$a Patáková, Ivana
700    1_
$a Varri, Alpo
773    0_
$t International Journal of Bio-Medical Computing $x 0020-7101 $g Roč. 28, č. 1-2 (1991), s. 71-89 $p Int J Biomed Comput $w MED00002293
773    0_
$p Int J Biomed Comput $g 28(1-2):71-89, 1991 May-Jun $x 0020-7101
910    __
$a ABA008 $y 3 $z 0
990    __
$a 20130423104028 $b ABA008
991    __
$a 20130429101134 $b ABA008
999    __
$a ok $b bmc $g 978682 $s 813797
BAS    __
$a 3
BMC    __
$a 1991 $b 28 $c 1-2 $d 71-89 $i 0020-7101 $m International journal of bio-medical computing $x MED00002293
GRA    __
$a IZ593 $p MZ0
LZP    __
$a 2013-04/ewbo

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...