• Je něco špatně v tomto záznamu ?

SProt: sphere-based protein structure similarity algorithm

J. Galgonek, D. Hoksza, T. Skopal,

. 2011 ; 9 Suppl 1 () : S20.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc13015754

BACKGROUND: Similarity search in protein databases is one of the most essential issues in computational proteomics. With the growing number of experimentally resolved protein structures, the focus shifted from sequences to structures. The area of structure similarity forms a big challenge since even no standard definition of optimal structure similarity exists in the field. RESULTS: We propose a protein structure similarity measure called SProt. SProt concentrates on high-quality modeling of local similarity in the process of feature extraction. SProt's features are based on spherical spatial neighborhood of amino acids where similarity can be well-defined. On top of the partial local similarities, global measure assessing similarity to a pair of protein structures is built. Finally, indexing is applied making the search process by an order of magnitude faster. CONCLUSIONS: The proposed method outperforms other methods in classification accuracy on SCOP superfamily and fold level, while it is at least comparable to the best existing solutions in terms of precision-recall or quality of alignment.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13015754
003      
CZ-PrNML
005      
20130510092611.0
007      
ta
008      
130424s2011 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/1477-5956-9-S1-S20 $2 doi
035    __
$a (PubMed)22166105
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Galgonek, Jakub $u Siret Research Group, Faculty of Mathematics and Physics, Charles University in Prague, Malostranské nám, 25, 118 00 Prague, Czech Republic. galgonek@ksi.mff.cuni.cz.
245    10
$a SProt: sphere-based protein structure similarity algorithm / $c J. Galgonek, D. Hoksza, T. Skopal,
520    9_
$a BACKGROUND: Similarity search in protein databases is one of the most essential issues in computational proteomics. With the growing number of experimentally resolved protein structures, the focus shifted from sequences to structures. The area of structure similarity forms a big challenge since even no standard definition of optimal structure similarity exists in the field. RESULTS: We propose a protein structure similarity measure called SProt. SProt concentrates on high-quality modeling of local similarity in the process of feature extraction. SProt's features are based on spherical spatial neighborhood of amino acids where similarity can be well-defined. On top of the partial local similarities, global measure assessing similarity to a pair of protein structures is built. Finally, indexing is applied making the search process by an order of magnitude faster. CONCLUSIONS: The proposed method outperforms other methods in classification accuracy on SCOP superfamily and fold level, while it is at least comparable to the best existing solutions in terms of precision-recall or quality of alignment.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hoksza, David $u -
700    1_
$a Skopal, Tomáš $u -
773    0_
$w MED00008250 $t Proteome science $x 1477-5956 $g Roč. 9 Suppl 1(2011), s. S20
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22166105 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130424 $b ABA008
991    __
$a 20130510092917 $b ABA008
999    __
$a ind $b bmc $g 978955 $s 814075
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 9 Suppl 1 $d S20 $i 1477-5956 $m Proteome science $n Proteome Sci $x MED00008250
LZP    __
$a Pubmed-20130424

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...