-
Je něco špatně v tomto záznamu ?
SProt: sphere-based protein structure similarity algorithm
J. Galgonek, D. Hoksza, T. Skopal,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
BioMedCentral
od 2003-12-01
BioMedCentral Open Access
od 2003
Directory of Open Access Journals
od 2003
Free Medical Journals
od 2003
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2003-01-01
Open Access Digital Library
od 2003-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2003
Springer Nature OA/Free Journals
od 2003-12-01
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Similarity search in protein databases is one of the most essential issues in computational proteomics. With the growing number of experimentally resolved protein structures, the focus shifted from sequences to structures. The area of structure similarity forms a big challenge since even no standard definition of optimal structure similarity exists in the field. RESULTS: We propose a protein structure similarity measure called SProt. SProt concentrates on high-quality modeling of local similarity in the process of feature extraction. SProt's features are based on spherical spatial neighborhood of amino acids where similarity can be well-defined. On top of the partial local similarities, global measure assessing similarity to a pair of protein structures is built. Finally, indexing is applied making the search process by an order of magnitude faster. CONCLUSIONS: The proposed method outperforms other methods in classification accuracy on SCOP superfamily and fold level, while it is at least comparable to the best existing solutions in terms of precision-recall or quality of alignment.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13015754
- 003
- CZ-PrNML
- 005
- 20130510092611.0
- 007
- ta
- 008
- 130424s2011 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/1477-5956-9-S1-S20 $2 doi
- 035 __
- $a (PubMed)22166105
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Galgonek, Jakub $u Siret Research Group, Faculty of Mathematics and Physics, Charles University in Prague, Malostranské nám, 25, 118 00 Prague, Czech Republic. galgonek@ksi.mff.cuni.cz.
- 245 10
- $a SProt: sphere-based protein structure similarity algorithm / $c J. Galgonek, D. Hoksza, T. Skopal,
- 520 9_
- $a BACKGROUND: Similarity search in protein databases is one of the most essential issues in computational proteomics. With the growing number of experimentally resolved protein structures, the focus shifted from sequences to structures. The area of structure similarity forms a big challenge since even no standard definition of optimal structure similarity exists in the field. RESULTS: We propose a protein structure similarity measure called SProt. SProt concentrates on high-quality modeling of local similarity in the process of feature extraction. SProt's features are based on spherical spatial neighborhood of amino acids where similarity can be well-defined. On top of the partial local similarities, global measure assessing similarity to a pair of protein structures is built. Finally, indexing is applied making the search process by an order of magnitude faster. CONCLUSIONS: The proposed method outperforms other methods in classification accuracy on SCOP superfamily and fold level, while it is at least comparable to the best existing solutions in terms of precision-recall or quality of alignment.
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Hoksza, David $u -
- 700 1_
- $a Skopal, Tomáš $u -
- 773 0_
- $w MED00008250 $t Proteome science $x 1477-5956 $g Roč. 9 Suppl 1(2011), s. S20
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22166105 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130424 $b ABA008
- 991 __
- $a 20130510092917 $b ABA008
- 999 __
- $a ind $b bmc $g 978955 $s 814075
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 9 Suppl 1 $d S20 $i 1477-5956 $m Proteome science $n Proteome Sci $x MED00008250
- LZP __
- $a Pubmed-20130424