-
Je něco špatně v tomto záznamu ?
The application of electrospun titania nanofibers in dye-sensitized solar cells
H. Krysova, A. Zukal, J. Trckova-Barakova, AK. Chandiran, MK. Nazeeruddin, M. Grätzel, L. Kavan,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- 2,2'-dipyridyl analogy a deriváty chemie MeSH
- barvicí látky chemie MeSH
- elektrody MeSH
- elektrolyty chemie MeSH
- nanočástice chemie MeSH
- nanovlákna chemie ultrastruktura MeSH
- organokovové sloučeniny chemie MeSH
- polymery chemie MeSH
- sluneční energie * MeSH
- titan chemie MeSH
- zdroje elektrické energie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13023928
- 003
- CZ-PrNML
- 005
- 20130710092708.0
- 007
- ta
- 008
- 130703s2013 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.2533/chimia.2013.149 $2 doi
- 035 __
- $a (PubMed)23574954
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Krysova, Hana $u J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague 8, Czech Republic.
- 245 14
- $a The application of electrospun titania nanofibers in dye-sensitized solar cells / $c H. Krysova, A. Zukal, J. Trckova-Barakova, AK. Chandiran, MK. Nazeeruddin, M. Grätzel, L. Kavan,
- 520 9_
- $a Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated.
- 650 _2
- $a 2,2'-dipyridyl $x analogy a deriváty $x chemie $7 D015082
- 650 _2
- $a barvicí látky $x chemie $7 D004396
- 650 12
- $a zdroje elektrické energie $7 D011211
- 650 _2
- $a elektrody $7 D004566
- 650 _2
- $a elektrolyty $x chemie $7 D004573
- 650 _2
- $a nanovlákna $x chemie $x ultrastruktura $7 D057139
- 650 _2
- $a nanočástice $x chemie $7 D053758
- 650 _2
- $a organokovové sloučeniny $x chemie $7 D009942
- 650 _2
- $a polymery $x chemie $7 D011108
- 650 12
- $a sluneční energie $7 D012993
- 650 _2
- $a titan $x chemie $7 D014025
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Zukal, Arnost $u -
- 700 1_
- $a Trckova-Barakova, Jana $u -
- 700 1_
- $a Chandiran, Aravind Kumar $u -
- 700 1_
- $a Nazeeruddin, Mohammad Khaja $u -
- 700 1_
- $a Grätzel, Michael $u -
- 700 1_
- $a Kavan, Ladislav $u -
- 773 0_
- $w MED00002136 $t Chimia $x 0009-4293 $g Roč. 67, č. 3 (2013), s. 149-54
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23574954 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130703 $b ABA008
- 991 __
- $a 20130710093131 $b ABA008
- 999 __
- $a ok $b bmc $g 987608 $s 822308
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 67 $c 3 $d 149-54 $i 0009-4293 $m Chimia $n Chimia (Aarau) $x MED00002136
- LZP __
- $a Pubmed-20130703