-
Something wrong with this record ?
Neo-sex chromosomes and adaptive potential in tortricid pests
P. Nguyen, M. Sýkorová, J. Šíchová, V. Kůta, M. Dalíková, R. Čapková Frydrychová, LG. Neven, K. Sahara, F. Marec,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Free Medical Journals
from 1915 to 6 months ago
Freely Accessible Science Journals
from 1915 to 6 months ago
PubMed Central
from 1915 to 6 months ago
Europe PubMed Central
from 1915 to 6 months ago
Open Access Digital Library
from 1915-01-01
Open Access Digital Library
from 1915-01-15
- MeSH
- Adaptation, Biological genetics MeSH
- Physical Chromosome Mapping MeSH
- In Situ Hybridization, Fluorescence MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- Moths genetics MeSH
- Sex Chromosomes genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Translocation, Genetic genetics MeSH
- Chromosomes, Artificial, Bacterial MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z-autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13023929
- 003
- CZ-PrNML
- 005
- 20130709115315.0
- 007
- ta
- 008
- 130703s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1220372110 $2 doi
- 035 __
- $a (PubMed)23569222
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Nguyen, Petr $u Laboratory of Molecular Cytogenetics, Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic.
- 245 10
- $a Neo-sex chromosomes and adaptive potential in tortricid pests / $c P. Nguyen, M. Sýkorová, J. Šíchová, V. Kůta, M. Dalíková, R. Čapková Frydrychová, LG. Neven, K. Sahara, F. Marec,
- 520 9_
- $a Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z-autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation.
- 650 _2
- $a biologická adaptace $x genetika $7 D000220
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a umělé bakteriální chromozomy $7 D022202
- 650 12
- $a molekulární evoluce $7 D019143
- 650 _2
- $a hybridizace in situ fluorescenční $7 D017404
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a můry $x genetika $7 D009036
- 650 _2
- $a fyzikální mapování chromozomů $7 D020161
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 650 _2
- $a pohlavní chromozomy $x genetika $7 D012730
- 650 _2
- $a translokace genetická $x genetika $7 D014178
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Sýkorová, Miroslava $u -
- 700 1_
- $a Šíchová, Jindra $u -
- 700 1_
- $a Kůta, Václav $u -
- 700 1_
- $a Dalíková, Martina $u -
- 700 1_
- $a Čapková Frydrychová, Radmila $u -
- 700 1_
- $a Neven, Lisa G $u -
- 700 1_
- $a Sahara, Ken $u -
- 700 1_
- $a Marec, František $u -
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 110, č. 17 (2013), s. 6931-6
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23569222 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130703 $b ABA008
- 991 __
- $a 20130709115737 $b ABA008
- 999 __
- $a ok $b bmc $g 987609 $s 822309
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 110 $c 17 $d 6931-6 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20130703