• Je něco špatně v tomto záznamu ?

Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate

D. Kopečny, R. Končitíková, M. Tylichová, A. Vigouroux, H. Moskalíková, M. Soural, M. Šebela, S. Moréra,

. 2013 ; 288 (13) : 9491-507.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13023959

Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13023959
003      
CZ-PrNML
005      
20130709100248.0
007      
ta
008      
130703s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1074/jbc.M112.443952 $2 doi
035    __
$a (PubMed)23408433
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kopečny, David $u Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic. kopecny_david@yahoo.co.uk
245    10
$a Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate / $c D. Kopečny, R. Končitíková, M. Tylichová, A. Vigouroux, H. Moskalíková, M. Soural, M. Šebela, S. Moréra,
520    9_
$a Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development.
650    _2
$a aldehydoxidoreduktasy $x chemie $x genetika $x metabolismus $7 D000445
650    _2
$a aldehydy $x chemie $7 D000447
650    _2
$a krystalografie rentgenová $x metody $7 D018360
650    12
$a regulace genové exprese enzymů $7 D015971
650    12
$a regulace genové exprese u rostlin $7 D018506
650    _2
$a kinetika $7 D007700
650    _2
$a Solanum lycopersicum $x enzymologie $7 D018551
650    _2
$a chemické modely $7 D008956
650    _2
$a mutageneze cílená $7 D016297
650    _2
$a NAD $x chemie $7 D009243
650    _2
$a fylogeneze $7 D010802
650    _2
$a fyziologie rostlin $7 D018521
650    _2
$a rostliny $x enzymologie $7 D010944
650    _2
$a polyethylenglykoly $x chemie $7 D011092
650    _2
$a vazba proteinů $7 D011485
650    _2
$a semena rostlinná $x metabolismus $7 D012639
650    _2
$a substrátová specifita $7 D013379
650    _2
$a kukuřice setá $x enzymologie $7 D003313
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Končitíková, Radka $u -
700    1_
$a Tylichová, Martina $u -
700    1_
$a Vigouroux, Armelle $u -
700    1_
$a Moskalíková, Hana $u -
700    1_
$a Soural, Miroslav $u -
700    1_
$a Šebela, Marek $u -
700    1_
$a Moréra, Solange $u -
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 288, č. 13 (2013), s. 9491-507
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23408433 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130703 $b ABA008
991    __
$a 20130709100710 $b ABA008
999    __
$a ok $b bmc $g 987639 $s 822339
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 288 $c 13 $d 9491-507 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
LZP    __
$a Pubmed-20130703

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...