-
Je něco špatně v tomto záznamu ?
CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures
E. Chovancova, A. Pavelka, P. Benes, O. Strnad, J. Brezovsky, B. Kozlikova, A. Gora, V. Sustr, M. Klvana, P. Medek, L. Biedermannova, J. Sochor, J. Damborsky,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 2005
Public Library of Science (PLoS)
od 2005
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2005-06-01
Open Access Digital Library
od 2005-06-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-01-01
Medline Complete (EBSCOhost)
od 2005-06-01
Health & Medicine (ProQuest)
od 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
od 2005
- MeSH
- algoritmy * MeSH
- hydrolasy chemie metabolismus MeSH
- konformace proteinů * MeSH
- krystalografie MeSH
- proteiny chemie metabolismus MeSH
- shluková analýza MeSH
- simulace molekulární dynamiky MeSH
- software * MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13024217
- 003
- CZ-PrNML
- 005
- 20130709113252.0
- 007
- ta
- 008
- 130703s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1002708 $2 doi
- 035 __
- $a (PubMed)23093919
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Chovancova, Eva $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic.
- 245 10
- $a CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures / $c E. Chovancova, A. Pavelka, P. Benes, O. Strnad, J. Brezovsky, B. Kozlikova, A. Gora, V. Sustr, M. Klvana, P. Medek, L. Biedermannova, J. Sochor, J. Damborsky,
- 520 9_
- $a Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a krystalografie $7 D003461
- 650 _2
- $a hydrolasy $x chemie $x metabolismus $7 D006867
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 12
- $a konformace proteinů $7 D011487
- 650 _2
- $a proteiny $x chemie $x metabolismus $7 D011506
- 650 12
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pavelka, Antonin $u -
- 700 1_
- $a Benes, Petr $u -
- 700 1_
- $a Strnad, Ondrej $u -
- 700 1_
- $a Brezovsky, Jan $u -
- 700 1_
- $a Kozlikova, Barbora $u -
- 700 1_
- $a Gora, Artur $u -
- 700 1_
- $a Sustr, Vilem $u -
- 700 1_
- $a Klvana, Martin $u -
- 700 1_
- $a Medek, Petr $u -
- 700 1_
- $a Biedermannova, Lada $u -
- 700 1_
- $a Sochor, Jiri $u -
- 700 1_
- $a Damborsky, Jiri $u -
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 8, č. 10 (2012), s. e1002708
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23093919 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130703 $b ABA008
- 991 __
- $a 20130709113714 $b ABA008
- 999 __
- $a ok $b bmc $g 987897 $s 822597
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 8 $c 10 $d e1002708 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- LZP __
- $a Pubmed-20130703