-
Something wrong with this record ?
Oscillatory changes in cognitive networks activated during a three-stimulus visual paradigm: an intracerebral study
M. Bočková, J. Chládek, L. Šímová, P. Jurák, J. Halámek, I. Rektor,
Language English Country Netherlands
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Alpha Rhythm physiology MeSH
- Beta Rhythm physiology MeSH
- Biological Clocks physiology MeSH
- Adult MeSH
- Electroencephalography * MeSH
- Epilepsy physiopathology MeSH
- Evoked Potentials physiology MeSH
- Cognition physiology MeSH
- Cortical Synchronization physiology MeSH
- Humans MeSH
- Adolescent MeSH
- Models, Neurological * MeSH
- Prefrontal Cortex physiology MeSH
- Psychomotor Performance physiology MeSH
- Photic Stimulation methods MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
OBJECTIVE: The aim of this work was to study the oscillatory changes during target and distractor stimuli processing. We focused mainly on responses after distractor stimuli in the prefrontal cortex and their possible relation to our previous results from the basal ganglia. METHODS: Five epilepsy surgery candidates with implanted depth electrodes performed a three-stimulus paradigm. The frequent stimulus (70%; without required response) was a small blue circle, the target stimulus (15%; with motor response) was a larger blue circle, and the distractor stimulus (15%; without required response) was a checkerboard. The SEEG signals from 404 electrode contacts were analysed using event-related de/synchronization (ERD/S) methodology. RESULTS: The main response to the target stimuli was ERD in the alpha and low beta bands, predominantly in the motor control areas, parietal cortex and hippocampus. The distractor stimuli were generally accompanied by an early theta frequency band power increase most markedly in the prefrontal cortex. CONCLUSIONS: Different ERD/S patterns underline attentional shifting to rare target ("go") and distractor ("no-go") stimuli. SIGNIFICANCE: As an increase in lower frequency band power is considered to be a correlate of active inhibition, the prefrontal structures seem to be essential for inhibition of non-required movements.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13024328
- 003
- CZ-PrNML
- 005
- 20130708103343.0
- 007
- ta
- 008
- 130703s2013 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.clinph.2012.07.009 $2 doi
- 035 __
- $a (PubMed)22938795
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Bočková, M $u Central European Institute of Technology, First Department of Neurology, Masaryk University, St. Anne's Hospital, Brno, Czech Republic. martina.bockova@fnusa.cz
- 245 10
- $a Oscillatory changes in cognitive networks activated during a three-stimulus visual paradigm: an intracerebral study / $c M. Bočková, J. Chládek, L. Šímová, P. Jurák, J. Halámek, I. Rektor,
- 520 9_
- $a OBJECTIVE: The aim of this work was to study the oscillatory changes during target and distractor stimuli processing. We focused mainly on responses after distractor stimuli in the prefrontal cortex and their possible relation to our previous results from the basal ganglia. METHODS: Five epilepsy surgery candidates with implanted depth electrodes performed a three-stimulus paradigm. The frequent stimulus (70%; without required response) was a small blue circle, the target stimulus (15%; with motor response) was a larger blue circle, and the distractor stimulus (15%; without required response) was a checkerboard. The SEEG signals from 404 electrode contacts were analysed using event-related de/synchronization (ERD/S) methodology. RESULTS: The main response to the target stimuli was ERD in the alpha and low beta bands, predominantly in the motor control areas, parietal cortex and hippocampus. The distractor stimuli were generally accompanied by an early theta frequency band power increase most markedly in the prefrontal cortex. CONCLUSIONS: Different ERD/S patterns underline attentional shifting to rare target ("go") and distractor ("no-go") stimuli. SIGNIFICANCE: As an increase in lower frequency band power is considered to be a correlate of active inhibition, the prefrontal structures seem to be essential for inhibition of non-required movements.
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a alfa rytmus EEG $x fyziologie $7 D000513
- 650 _2
- $a beta rytmus EEG $x fyziologie $7 D001611
- 650 _2
- $a biologické hodiny $x fyziologie $7 D001683
- 650 _2
- $a kognice $x fyziologie $7 D003071
- 650 _2
- $a korová synchronizace $x fyziologie $7 D003344
- 650 12
- $a elektroencefalografie $7 D004569
- 650 _2
- $a epilepsie $x patofyziologie $7 D004827
- 650 _2
- $a evokované potenciály $x fyziologie $7 D005071
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 12
- $a modely neurologické $7 D008959
- 650 _2
- $a světelná stimulace $x metody $7 D010775
- 650 _2
- $a prefrontální mozková kůra $x fyziologie $7 D017397
- 650 _2
- $a psychomotorický výkon $x fyziologie $7 D011597
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Chládek, J $u -
- 700 1_
- $a Šímová, L $u -
- 700 1_
- $a Jurák, P $u -
- 700 1_
- $a Halámek, J $u -
- 700 1_
- $a Rektor, I $u -
- 773 0_
- $w MED00005214 $t Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology $x 1872-8952 $g Roč. 124, č. 2 (2013), s. 283-91
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22938795 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130703 $b ABA008
- 991 __
- $a 20130708103805 $b ABA008
- 999 __
- $a ok $b bmc $g 988008 $s 822708
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 124 $c 2 $d 283-91 $i 1872-8952 $m Clinical neurophysiology $n Clin Neurophysiol $x MED00005214
- LZP __
- $a Pubmed-20130703