Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Artificial neural networks in medical diagnosis

Filippo Amato, Alberto López, Eladia María Peña-Méndez, Petr Vaňhara, Aleš Hampl, Josef Havel

. 2013 ; 11 (2) : 47-58.

Language English Country Czech Republic

Document type Introductory Journal Article, Research Support, Non-U.S. Gov't

An extensive amount of information is currently available to clinical specialists, ranging from details of clinical symptoms to various types of biochemical data and outputs of imaging devices. Each type of data provides information that must be evaluated and assigned to a particular pathology during the diagnostic process. To streamline the diagnostic process in daily routine and avoid misdiagnosis, artificial intelligence methods (especially computer aided diagnosis and artificial neural networks) can be employed. These adaptive learning algorithms can handle diverse types of medical data and integrate them into categorized outputs. In this paper, we briefly review and discuss the philosophy, capabilities, and limitations of artificial neural networks in medical diagnosis through selected exampl

References provided by Crossref.org

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc13028206
003      
CZ-PrNML
005      
20131021134236.0
007      
ta
008      
130902s2013 xr ad f 000 0eng||
009      
AR
024    7_
$a 10.2478/v10136-012-0031-x $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Amato, Filippo $7 _AN074450 $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
245    10
$a Artificial neural networks in medical diagnosis / $c Filippo Amato, Alberto López, Eladia María Peña-Méndez, Petr Vaňhara, Aleš Hampl, Josef Havel
504    __
$a Literatura
520    9_
$a An extensive amount of information is currently available to clinical specialists, ranging from details of clinical symptoms to various types of biochemical data and outputs of imaging devices. Each type of data provides information that must be evaluated and assigned to a particular pathology during the diagnostic process. To streamline the diagnostic process in daily routine and avoid misdiagnosis, artificial intelligence methods (especially computer aided diagnosis and artificial neural networks) can be employed. These adaptive learning algorithms can handle diverse types of medical data and integrate them into categorized outputs. In this paper, we briefly review and discuss the philosophy, capabilities, and limitations of artificial neural networks in medical diagnosis through selected exampl
650    _2
$a umělá inteligence $7 D001185
650    12
$a neuronové sítě $7 D016571
650    _2
$a kardiovaskulární nemoci $x diagnóza $7 D002318
650    _2
$a diabetes mellitus $x diagnóza $7 D003920
650    _2
$a nádory $x diagnóza $7 D009369
650    _2
$a rozhodovací teorie $7 D003662
650    _2
$a databáze jako téma $7 D019992
650    12
$a diagnostické techniky a postupy $x trendy $7 D019937
655    _2
$a úvodní články $7 D054711
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a López, Alberto $7 _AN074453 $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; University, Salamanca, Spain
700    1_
$a Peña-Méndez, Eladia María $u Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of La Laguna, La Laguna, Tenerife, Spain
700    1_
$a Vaňhara, Petr, $d 1980- $7 xx0106079 $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Hampl, Aleš, $d 1962- $7 ola2002153626 $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
700    1_
$a Havel, Josef, $d 1940- $7 jk01040227 $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Physical Electronics, Faculty of Science, Masaryk University, Brno, Czech Republic; R&D Centre for low-cost plasma and nanotechnology surface modifications, CEPLANT , Masaryk University, Brno, Czech Republic
773    0_
$t Journal of applied biomedicine $x 1214-021X $g Roč. 11, č. 2 (2013), s. 47-58 $w MED00012667
856    41
$u https://jab.zsf.jcu.cz/pdfs/jab/2013/02/01.pdf $y plný text volně přístupný
910    __
$a ABA008 $b B 2301 $c 1249 $y 3 $z 0
990    __
$a 20130902075546 $b ABA008
991    __
$a 20131021134829 $b ABA008
999    __
$a ok $b bmc $g 992230 $s 826638
BAS    __
$a 3
BMC    __
$a 2013 $b 11 $c 2 $i 1214-021X $m Journal of Applied Biomedicine $n J. Appl. Biomed. (Čes. Budějovice Print) $x MED00012667 $d 47-58
LZP    __
$c NLK188 $d 20131021 $a NLK 2013-37/ip

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...