SOS1 tonoplast neo-localization and the RGG protein SALTY are important in the extreme salinity tolerance of Salicornia bigelovii
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
38769297
PubMed Central
PMC11106269
DOI
10.1038/s41467-024-48595-5
PII: 10.1038/s41467-024-48595-5
Knihovny.cz E-zdroje
- MeSH
- Chenopodiaceae * metabolismus genetika účinky léků MeSH
- chlorid sodný farmakologie metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- proteomika MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné proteiny * metabolismus genetika MeSH
- salinita MeSH
- solný stres MeSH
- tabák metabolismus genetika účinky léků MeSH
- tolerance k soli * genetika MeSH
- transkriptom MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.
Department of Biology Penn State University University Park PA 16801 US
Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
Zobrazit více v PubMed
Munns R, Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911. PubMed DOI
FAO & ITPS. Status of the world’s soil resources (SWR) - Main Report, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. https://openknowledge.fao.org/server/api/core/bitstreams/6ec24d75-19bd-4f1f-b1c5-5becf50d0871/content Ch. 6, 124–125 (2015).
Ivushkin, K. et al. Global mapping of soil salinity change. Remote Sens. Environ.231, 111260 (2019).
FAO. Global Soil Partnership.http://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/ (2021).
UN. World Population Prospects 2019: Highlights. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (2019).
Melino V, Tester M. Salt-tolerant crops: time to deliver. Annu. Rev. Plant Biol. 2023;74:671–696. doi: 10.1146/annurev-arplant-061422-104322. PubMed DOI
Kadereit G, et al. A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae) Taxon. 2007;56:1143–1170. doi: 10.2307/25065909. DOI
Lv S, et al. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol. Biochem. 2012;51:47–52. doi: 10.1016/j.plaphy.2011.10.015. PubMed DOI
Ventura Y, Sagi M. Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013;92:144–153. doi: 10.1016/j.envexpbot.2012.07.010. DOI
Reddy MP, Sanish S, Iyengar ERR. Compartmentation of ions and organic compounds in Salicornia brachiata Roxb. Biol. Plant. 1993;35:547. doi: 10.1007/BF02928030. DOI
Ayala F, Oleary JW. Growth and physiology of Salicornia bigelovii torr at suboptimal salinity. Int. J. Plant Sci. 1995;156:197–205. doi: 10.1086/297241. DOI
Ayala F, OLeary JW, Schumaker KS. Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr in response to NaCl. J. Exp. Bot. 1996;47:25–32. doi: 10.1093/jxb/47.1.25. DOI
Parks GE, Dietrich MA, Schumaker KS. Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl. J. Exp. Bot. 2002;53:1055–1065. doi: 10.1093/jexbot/53.371.1055. PubMed DOI
Flowers TJ, Yeo AR. Ion relations of plants under drought and salinity. Aust. J. Plant Physiol. 1986;13:75–91.
Glenn EP, Brown JJ, Blumwald E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999;18:829. doi: 10.1080/07352689991309207. DOI
Webb KL. NaCl effects on growth and transpiration in Salicornia bigelovii a salt-marsh halophyte. Plant Soil. 1966;24:261–268. doi: 10.1007/BF02232902. DOI
Brown JJ, Glenn EP, Fitzsimmons KM, Smith SE. Halophytes for the treatment of saline aquaculture effluent. Aquaculture. 1999;175:255–268. doi: 10.1016/S0044-8486(99)00084-8. DOI
Ohori T, Fujiyama H. Water deficit and abscisic acid production of Salicornia bigelovii under salinity stress. Soil Sci. Plant Nutr. 2011;57:566–572. doi: 10.1080/00380768.2011.597036. DOI
Kong Y, Zheng YB. Potential of producing Salicornia bigelovii hydroponically as a vegetable at moderate NaCl salinity. Hortscience. 2014;49:1154–1157. doi: 10.21273/HORTSCI.49.9.1154. DOI
Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014;26:115–124. doi: 10.1016/j.copbio.2013.12.004. PubMed DOI
Isayenkov SV, Maathuis FJM. Plant salinity stress: many unanswered questions remain. Front. Plant Sci. 2019;10:80. doi: 10.3389/fpls.2019.00080. PubMed DOI PMC
Maathuis FJM, Amtmann AK. + nutrition and Na+ toxicity: the basis of cellular K+ /Na+ ratios. Ann. Bot. 1999;84:123–133. doi: 10.1006/anbo.1999.0912. DOI
Davenport RJ, Tester M. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol. 2000;122:823–834. doi: 10.1104/pp.122.3.823. PubMed DOI PMC
Demidchik V, Tester M. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from arabidopsis roots. Plant Physiol. 2002;128:379–387. doi: 10.1104/pp.010524. PubMed DOI PMC
Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. The twins K+ and Na+ in plants. J. Plant Physiol. 2014;171:723–731. doi: 10.1016/j.jplph.2013.10.014. PubMed DOI
Flowers TJ, Galal HK, Bromham L. Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct. Plant Biol. 2010;37:604–612. doi: 10.1071/FP09269. DOI
Jefferies RL, Davy AJ, Rudmik T. Population biology of the salt marsh annual Salicornia Europaea agg. J. Ecol. 1981;69:17–31. doi: 10.2307/2259813. DOI
Sun HQ, Ding J, Piednoel M, Schneeberger K. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics. 2018;34:550–557. doi: 10.1093/bioinformatics/btx637. PubMed DOI
Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21:245. doi: 10.1186/s13059-020-02134-9. PubMed DOI PMC
Kaligarič M, Bohanec B, Simonovik B, Šajna N. Genetic and morphologic variability of annual glassworts (Salicornia L.) from the Gulf of Trieste (Northern Adriatic) Aquat. Bot. 2008;89:275–282. doi: 10.1016/j.aquabot.2008.02.003. DOI
Bateman A, et al. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Coordinators NR. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2016;44:D7–D19. doi: 10.1093/nar/gkv1290. PubMed DOI PMC
Thimm O, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI
Schwacke R, et al. MapMan4: A refined protein classification and annotation framework applicable to multi-omics data analysis. Mol. Plant. 2019;12:879–892. doi: 10.1016/j.molp.2019.01.003. PubMed DOI
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC
Carbon S, et al. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 2019;47:D330–D338. doi: 10.1093/nar/gky1055. PubMed DOI PMC
Ashburner M, et al. Gene ontology: tool for the unification of biology. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Choi W-G, Toyota M, Kim S-H, Hilleary R, Gilroy S. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl Acad. Sci. USA. 2014;111:6497–6502. doi: 10.1073/pnas.1319955111. PubMed DOI PMC
Schmöckel SM, et al. Different NaCl-induced calcium signatures in the Arabidopsis thaliana ecotypes Col-0 and C24. PLoS One. 2015;10:e0117564. doi: 10.1371/journal.pone.0117564. PubMed DOI PMC
Manishankar, P., Wang, N., Koster, P., Alatar, A. A. & Kudla, J. Calcium signaling during salt stress and in the regulation of ion homeostasis. J. Exp. Bot.69, 4215–4226 (2018). PubMed
Bassil E, Zhang SQ, Gong HJ, Tajima H, Blumwald E. Cation specificity of vacuolar NHX-type cation/H+ antiporters. Plant Physiol. 2019;179:616–629. doi: 10.1104/pp.18.01103. PubMed DOI PMC
Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999;285:1256–1258. doi: 10.1126/science.285.5431.1256. PubMed DOI
Yokoi S, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 2002;30:529–539. doi: 10.1046/j.1365-313X.2002.01309.x. PubMed DOI
Pardo JM, Cubero B, Leidi EO, Quintero FJ. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J. Exp. Bot. 2006;57:1181–1199. doi: 10.1093/jxb/erj114. PubMed DOI
Bassil E, et al. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell Online. 2011;23:224–239. doi: 10.1105/tpc.110.079426. PubMed DOI PMC
Shi H, Ishitani M, Kim C, Zhu J-K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl Acad. Sci. 2000;97:6896–6901. doi: 10.1073/pnas.120170197. PubMed DOI PMC
An R, et al. AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J. 2007;49:718–728. doi: 10.1111/j.1365-313X.2006.02990.x. PubMed DOI
Wu GQ, Wang JL, Li SJ. Genome-wide identification of Na+/H+ antiporter (NHX) genes in sugar beet (Beta vulgaris L.) and their regulated expression under salt stress. Genes. 2019;10:401. doi: 10.3390/genes10050401. PubMed DOI PMC
Zhang L, et al. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol. 2009;149:916–928. doi: 10.1104/pp.108.131144. PubMed DOI PMC
Sunarpi, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 2005;44:928–938. doi: 10.1111/j.1365-313X.2005.02595.x. PubMed DOI
Davenport RJ, et al. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 2007;30:497–507. doi: 10.1111/j.1365-3040.2007.01637.x. PubMed DOI
Katschnig D, Bliek T, Rozema J, Schat H. Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya. Plant Sci. 2015;234:144–154. doi: 10.1016/j.plantsci.2015.02.011. PubMed DOI
Hodges TK, Leonard RT, Keenan TW, Bracker CE. Purification of an ion-stimulated adenosine-triphosphatase from plant roots - association with plasma-membranes. Proc. Natl Acad. Sci. USA. 1972;69:3307. doi: 10.1073/pnas.69.11.3307. PubMed DOI PMC
Yang, H. & Murphy, A. Membrane preparation, sucrose density gradients and two-phase separation fractionation from five-day-old Arabidopsis seedlings. Bio-protocol3, e1014 (2013).
Dunkley TPJ, et al. Mapping the Arabidopsis organelle proteome. Proc. Natl Acad. Sci. USA. 2006;103:6518–6523. doi: 10.1073/pnas.0506958103. PubMed DOI PMC
Sadowski PG, et al. Quantitative proteomic approach to study subcellular localization of membrane proteins. Nat. Protoc. 2006;1:1778–1789. doi: 10.1038/nprot.2006.254. PubMed DOI
Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–U60. doi: 10.1038/nmeth.1322. PubMed DOI
Ferro M, et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell. Proteom. 2010;9:1063–1084. doi: 10.1074/mcp.M900325-MCP200. PubMed DOI PMC
Trotter MWB, Sadowski PG, Dunkley TPJ, Groen AJ, Lilley KS. Improved sub-cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions. Proteomics. 2010;10:4213–4219. doi: 10.1002/pmic.201000359. PubMed DOI
Nikolovski N, et al. Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. Plant Physiol. 2012;160:1037–1051. doi: 10.1104/pp.112.204263. PubMed DOI PMC
Groen AJ, et al. Identification of trans-Golgi network proteins in Arabidopsis thaliana root tissue. J. Proteome Res. 2014;13:763–776. doi: 10.1021/pr4008464. PubMed DOI PMC
Nikolovski N, Shliaha PV, Gatto L, Dupree P, Lilley KS. Label-free protein quantification for plant golgi protein localization and abundance. Plant Physiol. 2014;166:1033–1043. doi: 10.1104/pp.114.245589. PubMed DOI PMC
Gatto L, Breckels LM, Wieczorek S, Burger T, Lilley KS. Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics. 2014;30:1322–1324. doi: 10.1093/bioinformatics/btu013. PubMed DOI PMC
Breckels LM, et al. The effect of organelle discovery upon sub-cellular protein localisation. J. Proteom. 2013;88:129–140. doi: 10.1016/j.jprot.2013.02.019. PubMed DOI
Gatto L, et al. A foundation for reliable spatial proteomics data analysis. Mol. Cell. Proteom. 2014;13:1937–1952. doi: 10.1074/mcp.M113.036350. PubMed DOI PMC
Breckels LM, et al. Learning from heterogeneous data sources: an application in spatial proteomics. PLoS Comput. Biol. 2016;12:e1004920. doi: 10.1371/journal.pcbi.1004920. PubMed DOI PMC
Breckels LM, Mulvey CM, Lilley KS, Gatto L. A Bioconductor workflow for processing and analysing spatial proteomics data. F1000Res. 2016;5:2926. doi: 10.12688/f1000research.10411.1. PubMed DOI PMC
Crook OM, Breckels LM, Lilley KS, Kirk PDW, Gatto L. A Bioconductor workflow for the Bayesian analysis of spatial proteomics. F1000Res. 2019;8:446. doi: 10.12688/f1000research.18636.1. PubMed DOI PMC
Wu SJ, Ding L, Zhu JK. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell. 1996;8:617–627. doi: 10.2307/3870339. PubMed DOI PMC
Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl Acad. Sci. USA. 2002;99:8436–8441. doi: 10.1073/pnas.122224699. PubMed DOI PMC
Qiu QS, Barkla BJ, Vera-Estrella R, Zhu JK, Schumaker KS. Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol. 2003;132:1041–1052. doi: 10.1104/pp.102.010421. PubMed DOI PMC
Shi H, Quintero FJ, Pardo JM, Zhu J-K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell Online. 2002;14:465–477. doi: 10.1105/tpc.010371. PubMed DOI PMC
Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol. 2012;12:188. doi: 10.1186/1471-2229-12-188. PubMed DOI PMC
Geldner N, et al. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 2009;59:169–178. doi: 10.1111/j.1365-313X.2009.03851.x. PubMed DOI PMC
Wojcik S, Kriechbaumer V. Go your own way: membrane-targeting sequences. Plant Physiol. 2021;185:608–618. doi: 10.1093/plphys/kiaa058. PubMed DOI PMC
Zhang Z. KaKs_Calculator 3.0: calculating selective pressure on coding and non-coding sequences. Genomics Proteom. Bioinforma. 2022;20:536–540. doi: 10.1016/j.gpb.2021.12.002. PubMed DOI PMC
Quintero FJ, Blatt MR, Pardo JM. Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett. 2000;471:224–228. doi: 10.1016/S0014-5793(00)01412-5. PubMed DOI
Barragan V, et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell. 2012;24:1127–1142. doi: 10.1105/tpc.111.095273. PubMed DOI PMC
Leidi EO, et al. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J. 2010;61:495–506. doi: 10.1111/j.1365-313X.2009.04073.x. PubMed DOI
Bassil E, et al. The arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell. 2011;23:3482–3497. doi: 10.1105/tpc.111.089581. PubMed DOI PMC
Osawa H, Stacey G, Gassmann W. ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. Biochem. J. 2005;393:267. doi: 10.1042/BJ20050920. PubMed DOI PMC
Chowdhury MN, Jin H. The RGG motif proteins: Interactions, functions, and regulations. Wiley Interdiscip. Rev. RNA. 2023;14:e1748. doi: 10.1002/wrna.1748. PubMed DOI PMC
Wormit A, Traub M, FlöRchinger M, Neuhaus HE, MöHlmann T. Characterization of three novel members of the arabidopsis thaliana equilibrative nucleoside transporter (ENT) family. Biochem. J. 2004;383:19–26. doi: 10.1042/BJ20040389. PubMed DOI PMC
Bernard C, et al. Equilibrative nucleoside transporter 1 (ENT1) is critical for pollen germination and vegetative growth in Arabidopsis. J. Exp. Bot. 2011;62:4627–4637. doi: 10.1093/jxb/err183. PubMed DOI PMC
Wright EM. Glucose transport families SLC5 and SLC50. Mol. Asp. Med. 2013;34:183–196. doi: 10.1016/j.mam.2012.11.002. PubMed DOI
Bala PA, Foster J, Carvelli L, Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol. Asp. Med. 2013;34:197–219. doi: 10.1016/j.mam.2012.07.002. PubMed DOI PMC
Alqahtani M, et al. The role of PQL genes in response to salinity tolerance in arabidopsis and barley. Plant Direct. 2021;5:e00301. doi: 10.1002/pld3.301. PubMed DOI PMC
Kawano-Kawada M, et al. A PQ-loop protein Ypq2 is involved in the exchange of arginine and histidine across the vacuolar membrane of saccharomyces cerevisiae. Sci. Rep. 2019;9:15018. doi: 10.1038/s41598-019-51531-z. PubMed DOI PMC
Kalatzis V, Cherqui S, Antignac C, Gasnier B. Cystinosin, the protein defective in cystinosis, is a H+‐driven lysosomal cystine transporter. EMBO J. 2001;20:5940. doi: 10.1093/emboj/20.21.5940. PubMed DOI PMC
Jézégou A, et al. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc. Natl Acad. Sci. USA. 2012;109:E3434–E3443. doi: 10.1073/pnas.1211198109. PubMed DOI PMC
Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006;1:2876–2890. doi: 10.1038/nprot.2006.202. PubMed DOI PMC
Chemes LB, Alonso LG, Noval MG, de Prat-Gay G. Circular dichroism techniques for the analysis of intrinsically disordered proteins and domains. Methods Mol. Biol. 2012;895:387–404. doi: 10.1007/978-1-61779-927-3_22. PubMed DOI
Konrat R. NMR contributions to structural dynamics studies of intrinsically disordered proteins. J. Magn. Reson. 2014;241:74–85. doi: 10.1016/j.jmr.2013.11.011. PubMed DOI PMC
Solyom Z, et al. BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J. Biomol. NMR. 2013;55:311–321. doi: 10.1007/s10858-013-9715-0. PubMed DOI
Ambrosone A, et al. The arabidopsis RNA-binding protein AtRGGA regulates tolerance to salt and drought stress. Plant Physiol. 2015;168:292. doi: 10.1104/pp.114.255802. PubMed DOI PMC
Jones RL. The isolation of endoplasmic-reticulum from barley aleurone layers. Planta. 1980;150:58–69. doi: 10.1007/BF00385616. PubMed DOI
Schaller GE. Isolation of endoplasmic reticulum and its membrane. Methods Mol. Biol. 2017;1511:119–129. doi: 10.1007/978-1-4939-6533-5_10. PubMed DOI
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC
Lv S, et al. Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea. Acta Physiol. Plant. 2012;34:503–513. doi: 10.1007/s11738-011-0847-0. DOI
Quintero FJ, et al. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc. Natl Acad. Sci. USA. 2011;108:2611–2616. doi: 10.1073/pnas.1018921108. PubMed DOI PMC
Sze HH. +-translocating ATPases of the plasma membrane and tonoplast of plant cells. Physiol. Plant. 1984;61:683–691. doi: 10.1111/j.1399-3054.1984.tb05191.x. DOI
Yamaguchi T, Apse MP, Shi H, Blumwald E. Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc. Natl Acad. Sci. USA. 2003;100:12510–12515. doi: 10.1073/pnas.2034966100. PubMed DOI PMC
Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+ and pH dependent manner. Proc. Natl Acad. Sci. USA. 2005;102:16107–16112. doi: 10.1073/pnas.0504437102. PubMed DOI PMC
Møller IS, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in arabidopsis. Plant Cell. 2009;21:2163–2178. doi: 10.1105/tpc.108.064568. PubMed DOI PMC
Kiledjian M, Dreyfuss G. Primary structure and binding-activity of the Hnrnp U-protein - binding RNA through RGG box. Embo. J. 1992;11:2655–2664. doi: 10.1002/j.1460-2075.1992.tb05331.x. PubMed DOI PMC
Castello A, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149:1393–1406. doi: 10.1016/j.cell.2012.04.031. PubMed DOI
Thandapani P, O’Connor TR, Bailey TL, Richard S. Defining the RGG/RG motif. Mol. Cell. 2013;50:613–623. doi: 10.1016/j.molcel.2013.05.021. PubMed DOI
Dure L. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 1993;3:363–369. doi: 10.1046/j.1365-313X.1993.t01-19-00999.x. PubMed DOI
Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J. Biol. Chem. 2000;275:5668–5674. doi: 10.1074/jbc.275.8.5668. PubMed DOI
Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 2008;148:6–24. doi: 10.1104/pp.108.120725. PubMed DOI PMC
Uversky VN. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol. 2017;44:18–30. doi: 10.1016/j.sbi.2016.10.015. PubMed DOI
Cuevas-Velazquez CL, Dinneny JR. Organization out of disorder: liquid-liquid phase separation in plants. Curr. Opin. Plant Biol. 2018;45:68–74. doi: 10.1016/j.pbi.2018.05.005. PubMed DOI
Wallmann A, Kesten C. Common functions of disordered proteins across evolutionary distant organisms. Int. J. Mol. Sci. 2020;21:2105. doi: 10.3390/ijms21062105. PubMed DOI PMC
Mitrea DM, Kriwacki RW. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 2016;14:1. doi: 10.1186/s12964-015-0125-7. PubMed DOI PMC
Buchan JR. mRNP granules assembly, function, and connections with disease. Rna Biol. 2014;11:1019–1030. doi: 10.4161/15476286.2014.972208. PubMed DOI PMC
Anderson P, Kedersha N. Stress granules: the tao of RNA triage. Trends Biochem. Sci. 2008;33:141–150. doi: 10.1016/j.tibs.2007.12.003. PubMed DOI
Jain S, Parker R. The discovery and analysis of P bodies. Ten years of progress in. Gw/P Body Res. 2013;768:23–43. doi: 10.1007/978-1-4614-5107-5_3. PubMed DOI
Chong PA, Vernon RM, Forman-Kay JD. RGG/RG motif regions in RNA binding and phase separation. J. Mol. Biol. 2018;430:4650–4665. doi: 10.1016/j.jmb.2018.06.014. PubMed DOI
Roy R, Das G, Kuttanda IA, Bhatter N, Rajyaguru PI. Low complexity RGG-motif sequence is required for Processing body (P-body) disassembly. Nat. Commun. 2022;13:2077. doi: 10.1038/s41467-022-29715-5. PubMed DOI PMC
Bleckmann, A. et al. Cytosolic RGG RNA-binding proteins are temperature sensitive flowering time regulators in Arabidopsis. Biol. Chem.404, 1069–1084 (2023). PubMed
R Core Team. R: A Language And Environment For Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2023).
Kato A, Lamb JC, Birchler JA. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl Acad. Sci. USA. 2004;101:13554–13559. doi: 10.1073/pnas.0403659101. PubMed DOI PMC
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI
Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Andrews, S. FastQC: A Quality Control Tool For High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Cheng HY, Concepcion GT, Feng XW, Zhang HW, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods. 2021;18:170–175. doi: 10.1038/s41592-020-01056-5. PubMed DOI PMC
Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0http://www.repeatmasker.org (2013–2015).
Hubley R, et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016;44:D81–D89. doi: 10.1093/nar/gkv1272. PubMed DOI PMC
Bao WD, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA. 2015;6:11. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Bruna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom. Bioinform. 2021;3:lqaa108. doi: 10.1093/nargab/lqaa108. PubMed DOI PMC
Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-genome annotation with BRAKER. Methods Mol. Biol. 2019;1962:65–95. doi: 10.1007/978-1-4939-9173-0_5. PubMed DOI PMC
Bruna T, Lomsadze A, Borodovsky M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom. Bioinform. 2020;2:lqaa026. doi: 10.1093/nargab/lqaa026. PubMed DOI PMC
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494–6506. doi: 10.1093/nar/gki937. PubMed DOI PMC
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Iwata H, Gotoh O. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic Acids Res. 2012;40:e161. doi: 10.1093/nar/gks708. PubMed DOI PMC
Lomsadze A, Burns PD, Borodovsky M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 2014;42:e119–e119. doi: 10.1093/nar/gku557. PubMed DOI PMC
Stanke M, Schoffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinforma. 2006;7:62. doi: 10.1186/1471-2105-7-62. PubMed DOI PMC
Kriventseva EV, et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019;47:D807–D811. doi: 10.1093/nar/gky1053. PubMed DOI PMC
Camacho C, et al. BLAST plus: architecture and applications. BMC Bioinforma. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Aramaki T, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2252. doi: 10.1093/bioinformatics/btz859. PubMed DOI PMC
Jones P, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Lohse M, et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 2014;37:1250–1258. doi: 10.1111/pce.12231. PubMed DOI
Kaul S, et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692. PubMed DOI
Cheng CY, et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89:789–804. doi: 10.1111/tpj.13415. PubMed DOI
DOE-JGI. Brassica rapa v1.3 http://phytozome.jgi.doe.gov/ (2020).
Dohm JC, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris) Nature. 2014;505:546–549. doi: 10.1038/nature12817. PubMed DOI
Jarvis DE, et al. The genome of chenopodium quinoa. Nature. 2017;542:307–312. doi: 10.1038/nature21370. PubMed DOI
Xu, C. et al. Draft genome spinach transcriptome diversity 120 Spinacia access. Nature8, 15275 (2017). PubMed PMC
Schmutz J, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–183. doi: 10.1038/nature08670. PubMed DOI
DOE-JGI and USDA-NIFA Phaseolus vulgaris v2.1. http://phytozome.jgi.doe.gov/ (2020).
Hosmani, P. S. et al. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. Preprint at bioRxiv10.1101/767764 (2019).
Barchi L, et al. A chromosome-anchored eggplant genome sequence reveals key events in solanaceae evolution. Sci. Rep. 2019;9:11769. doi: 10.1038/s41598-019-47985-w. PubMed DOI PMC
McCormick RF, et al. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018;93:338–354. doi: 10.1111/tpj.13781. PubMed DOI
Maere S, Heymans K, Kuiper M. BiNGO: a cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics. 2005;21:3448–3449. doi: 10.1093/bioinformatics/bti551. PubMed DOI
Shannon P, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B-Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Edgar RC. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 2022;13:6968. doi: 10.1038/s41467-022-34630-w. PubMed DOI PMC
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Darriba D, et al. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020;37:291–294. doi: 10.1093/molbev/msz189. PubMed DOI PMC
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC
Lemoine F, et al. Renewing felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556:452–456. doi: 10.1038/s41586-018-0043-0. PubMed DOI PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Howe EA, Sinha R, Schlauch D, Quackenbush J. RNA-Seq analysis in MeV. Bioinformatics. 2011;27:3209–3210. doi: 10.1093/bioinformatics/btr490. PubMed DOI PMC
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. PubMed DOI
Searle BC. Scaffold: A bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics. 2010;10:1265–1269. doi: 10.1002/pmic.200900437. PubMed DOI
Usadel B, et al. A guide to using MapMan to visualize and compare omics data in plants: a case study in the crop species, Maize. Plant Cell Environ. 2009;32:1211–1229. doi: 10.1111/j.1365-3040.2009.01978.x. PubMed DOI
Wan SB, Mak MW, Kung SY. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines. BMC Bioinforma. 2012;13:290. doi: 10.1186/1471-2105-13-290. PubMed DOI PMC
Lampropoulos A, et al. GreenGate - A novel, versatile, and efficient cloning system for plant transgenesis. Plos One. 2013;8:e83043. doi: 10.1371/journal.pone.0083043. PubMed DOI PMC
Koncz C, Schell J. The promoter of Tl-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of agrobacterium binary vector. Mol. Gen. Genet. 1986;204:383–396. doi: 10.1007/BF00331014. DOI
Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM. pGreen:: a versatile and flexible binary Ti vector for -mediated plant transformation. Plant Mol. Biol. 2000;42:819–832. doi: 10.1023/A:1006496308160. PubMed DOI
Nagel R, Elliott A, Masel A, Birch RG, Manners JM. Electroporation of binary Ti plasmid vector into Agrobacterium tumefaciens and Agrobacterium rhizogenes. Fems. Microbiol. Lett. 1990;67:325–328. doi: 10.1111/j.1574-6968.1990.tb04041.x. DOI
Norkunas K, Harding R, Dale J, Dugdale B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods. 2018;14:71. doi: 10.1186/s13007-018-0343-2. PubMed DOI PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Meth. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Daniel Gietz, R. & Woods, R. A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. In Methods in Enzymology, 350 ((eds.) Guthrie, C. & Fink, G. R.) 87–96 (Academic Press, 2002). PubMed
Rodríguez-Navarro A, Ramos J. Dual system for potassium transport in saccharomyces cerevisiae. J. Bacteriol. 1984;159:940–945. doi: 10.1128/jb.159.3.940-945.1984. PubMed DOI PMC
Zhang Y, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods. 2011;7:30. doi: 10.1186/1746-4811-7-30. PubMed DOI PMC
Nelson BK, Cai X, Nebenfuhr A. A multicolored set of in vivo organelle markers for co-localization studies in arabidopsis and other plants. Plant J. 2007;51:1126–1136. doi: 10.1111/j.1365-313X.2007.03212.x. PubMed DOI
Studier FW. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 2005;41:207–234. doi: 10.1016/j.pep.2005.01.016. PubMed DOI
Marley J, Lu M, Bracken C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. Nmr. 2001;20:71–75. doi: 10.1023/A:1011254402785. PubMed DOI
Linding R, et al. Protein disorder prediction: implications for structural proteomics. Structure. 2003;11:1453–1459. doi: 10.1016/j.str.2003.10.002. PubMed DOI
Lupas A, Vandyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991;252:1162–1164. doi: 10.1126/science.252.5009.1162. PubMed DOI
Wiedemann C, Bellstedt P, Gorlach M. CAPITO-a web server-based analysis and plotting tool for circular dichroism data. Bioinformatics. 2013;29:1750–1757. doi: 10.1093/bioinformatics/btt278. PubMed DOI