Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application

VV. Thekkae Padil, M. Černík,

. 2013 ; 8 () : 889-98.

Jazyk angličtina Země Nový Zéland

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13031557

BACKGROUND: Copper oxide (CuO) nanoparticles have attracted huge attention due to catalytic, electric, optical, photonic, textile, nanofluid, and antibacterial activity depending on the size, shape, and neighboring medium. In the present paper, we synthesized CuO nanoparticles using gum karaya, a natural nontoxic hydrocolloid, by green technology and explored its potential antibacterial application. METHODS: The CuO nanoparticles were synthesized by a colloid-thermal synthesis process. The mixture contained various concentrations of CuCl2 • 2H2O (1 mM, 2 mM, and 3 mM) and gum karaya (10 mg/mL) and was kept at 75°C at 250 rpm for 1 hour in an orbital shaker. The synthesized CuO was purified and dried to obtain different sizes of the CuO nanoparticles. The well diffusion method was used to study the antibacterial activity of the synthesized CuO nanoparticles. The zone of inhibition, minimum inhibitory concentration, and minimum bactericidal concentration were determined by the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. RESULTS: Scanning electron microscopy analysis showed CuO nanoparticles evenly distributed on the surface of the gum matrix. X-ray diffraction of the synthesized nanoparticles indicates the formation of single-phase CuO with a monoclinic structure. The Fourier transform infrared spectroscopy peak at 525 cm(-1) should be a stretching of CuO, which matches up to the B2u mode. The peaks at 525 cm(-1) and 580 cm(-1) indicated the formation of CuO nanostructure. Transmission electron microscope analyses revealed CuO nanoparticles of 4.8 ± 1.6 nm, 5.5 ± 2.5 nm, and 7.8 ± 2.3 nm sizes were synthesized with various concentrations of CuCl2 • 2H2O (1 mM, 2 mM, and 3 mM). X-ray photoelectron spectroscopy profiles indicated that the O 1s and Cu 2p peak corresponding to the CuO nanoparticles were observed. The antibacterial activity of the synthesized nanoparticles was tested against Gram-negative and positive cultures. CONCLUSION: The formed CuO nanoparticles are small in size (4.8 ± 1.6 nm), highly stable, and have significant antibacterial action on both the Gram classes of bacteria compared to larger sizes of synthesized CuO (7.8 ± 2.3 nm) nanoparticles. The smaller size of the CuO nanoparticles (4.8 ± 1.6 nm) was found to be yielding a maximum zone of inhibition compared to the larger size of synthesized CuO nanoparticles (7.8 ± 2.3 nm). The results also indicate that increase in precursor concentration enhances an increase in particle size, as well as the morphology of synthesized CuO nanoparticles.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13031557
003      
CZ-PrNML
005      
20131007120719.0
007      
ta
008      
131002s2013 nz f 000 0|eng||
009      
AR
024    7_
$a 10.2147/IJN.S40599 $2 doi
035    __
$a (PubMed)23467397
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a nz
100    1_
$a Thekkae Padil, Vinod Vellora $u Laboratory of Chemical Remediation Processes, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec, Czech Republic.
245    10
$a Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application / $c VV. Thekkae Padil, M. Černík,
520    9_
$a BACKGROUND: Copper oxide (CuO) nanoparticles have attracted huge attention due to catalytic, electric, optical, photonic, textile, nanofluid, and antibacterial activity depending on the size, shape, and neighboring medium. In the present paper, we synthesized CuO nanoparticles using gum karaya, a natural nontoxic hydrocolloid, by green technology and explored its potential antibacterial application. METHODS: The CuO nanoparticles were synthesized by a colloid-thermal synthesis process. The mixture contained various concentrations of CuCl2 • 2H2O (1 mM, 2 mM, and 3 mM) and gum karaya (10 mg/mL) and was kept at 75°C at 250 rpm for 1 hour in an orbital shaker. The synthesized CuO was purified and dried to obtain different sizes of the CuO nanoparticles. The well diffusion method was used to study the antibacterial activity of the synthesized CuO nanoparticles. The zone of inhibition, minimum inhibitory concentration, and minimum bactericidal concentration were determined by the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. RESULTS: Scanning electron microscopy analysis showed CuO nanoparticles evenly distributed on the surface of the gum matrix. X-ray diffraction of the synthesized nanoparticles indicates the formation of single-phase CuO with a monoclinic structure. The Fourier transform infrared spectroscopy peak at 525 cm(-1) should be a stretching of CuO, which matches up to the B2u mode. The peaks at 525 cm(-1) and 580 cm(-1) indicated the formation of CuO nanostructure. Transmission electron microscope analyses revealed CuO nanoparticles of 4.8 ± 1.6 nm, 5.5 ± 2.5 nm, and 7.8 ± 2.3 nm sizes were synthesized with various concentrations of CuCl2 • 2H2O (1 mM, 2 mM, and 3 mM). X-ray photoelectron spectroscopy profiles indicated that the O 1s and Cu 2p peak corresponding to the CuO nanoparticles were observed. The antibacterial activity of the synthesized nanoparticles was tested against Gram-negative and positive cultures. CONCLUSION: The formed CuO nanoparticles are small in size (4.8 ± 1.6 nm), highly stable, and have significant antibacterial action on both the Gram classes of bacteria compared to larger sizes of synthesized CuO (7.8 ± 2.3 nm) nanoparticles. The smaller size of the CuO nanoparticles (4.8 ± 1.6 nm) was found to be yielding a maximum zone of inhibition compared to the larger size of synthesized CuO nanoparticles (7.8 ± 2.3 nm). The results also indicate that increase in precursor concentration enhances an increase in particle size, as well as the morphology of synthesized CuO nanoparticles.
650    _2
$a antibakteriální látky $x chemická syntéza $x chemie $x farmakologie $7 D000900
650    _2
$a měď $x chemie $x farmakologie $7 D003300
650    _2
$a Escherichia coli $x účinky léků $7 D004926
650    _2
$a technologie zelené chemie $x metody $7 D055772
650    _2
$a guma karaya $x chemie $7 D007618
650    _2
$a kovové nanočástice $x chemie $7 D053768
650    _2
$a mikrobiální testy citlivosti $7 D008826
650    _2
$a transmisní elektronová mikroskopie $7 D046529
650    _2
$a nanotechnologie $x metody $7 D036103
650    _2
$a velikost částic $7 D010316
650    _2
$a spektroskopie infračervená s Fourierovou transformací $7 D017550
650    _2
$a Staphylococcus aureus $x účinky léků $7 D013211
650    _2
$a difrakce rentgenového záření $7 D014961
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Černík, Miroslav $u -
773    0_
$w MED00176143 $t International journal of nanomedicine $x 1178-2013 $g Roč. 8(2013), s. 889-98
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23467397 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20131002 $b ABA008
991    __
$a 20131007121240 $b ABA008
999    __
$a ok $b bmc $g 995644 $s 830002
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 8 $d 889-98 $i 1178-2013 $m International journal of nanomedicine $n Int J Nanomedicine $x MED00176143
LZP    __
$a Pubmed-20131002

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...