-
Je něco špatně v tomto záznamu ?
Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity
NS. Lynn, H. Šípová, P. Adam, J. Homola,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23407647
DOI
10.1039/c2lc41184a
Knihovny.cz E-zdroje
- MeSH
- jednovláknová DNA analýza genetika MeSH
- limita detekce MeSH
- mikrofluidní analytické techniky přístrojové vybavení MeSH
- povrchová plasmonová rezonance přístrojové vybavení MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Affinity-based biosensing systems have become an important analytical tool for the detection and study of numerous biomolecules. The merging of these sensing technologies with microfluidic flow cells allows for faster detection times, increased sensitivities, and lower required sample volumes. In order to obtain a higher degree of performance from the sensor, it is important to know the effects of the flow cell geometry on the sensor sensitivity. In these sensors, the sensor sensitivity is related to the overall diffusive flux of analyte to the sensing surface; therefore increases in the analyte flux will be manifested as an increase in sensitivity, resulting in a lower limit of detection (LOD). Here we present a study pertaining to the effects of the flow cell height H on the analyte flux J, where for a common biosensor design we predict that the analyte flux will scale as J ≈ H(-2/3). We verify this scaling behavior via both numerical simulations as well as an experimental surface plasmon resonance (SPR) biosensor. We show the reduction of the flow cell height can have drastic effects on the sensor performance, where the LOD of our experimental system concerning the detection of ssDNA decreases by a factor of 4 when H is reduced from 47 μm to 7 μm. We utilize these results to discuss the applicability of this scaling behavior with respect to a generalized affinity-based biosensor.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13031608
- 003
- CZ-PrNML
- 005
- 20180404151310.0
- 007
- ta
- 008
- 131002s2013 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1039/c2lc41184a $2 doi
- 035 __
- $a (PubMed)23407647
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Lynn, N Scott $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, Prague, Czech Republic.
- 245 10
- $a Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity / $c NS. Lynn, H. Šípová, P. Adam, J. Homola,
- 520 9_
- $a Affinity-based biosensing systems have become an important analytical tool for the detection and study of numerous biomolecules. The merging of these sensing technologies with microfluidic flow cells allows for faster detection times, increased sensitivities, and lower required sample volumes. In order to obtain a higher degree of performance from the sensor, it is important to know the effects of the flow cell geometry on the sensor sensitivity. In these sensors, the sensor sensitivity is related to the overall diffusive flux of analyte to the sensing surface; therefore increases in the analyte flux will be manifested as an increase in sensitivity, resulting in a lower limit of detection (LOD). Here we present a study pertaining to the effects of the flow cell height H on the analyte flux J, where for a common biosensor design we predict that the analyte flux will scale as J ≈ H(-2/3). We verify this scaling behavior via both numerical simulations as well as an experimental surface plasmon resonance (SPR) biosensor. We show the reduction of the flow cell height can have drastic effects on the sensor performance, where the LOD of our experimental system concerning the detection of ssDNA decreases by a factor of 4 when H is reduced from 47 μm to 7 μm. We utilize these results to discuss the applicability of this scaling behavior with respect to a generalized affinity-based biosensor.
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a jednovláknová DNA $x analýza $x genetika $7 D004277
- 650 _2
- $a limita detekce $7 D057230
- 650 _2
- $a mikrofluidní analytické techniky $x přístrojové vybavení $7 D046210
- 650 _2
- $a povrchová plasmonová rezonance $x přístrojové vybavení $7 D020349
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Šípová, Hana $u - $7 xx0222979
- 700 1_
- $a Adam, Pavel $u - $7 gn_A_00001119
- 700 1_
- $a Homola, Jiří $u -
- 773 0_
- $w MED00169252 $t Lab on a chip $x 1473-0189 $g Roč. 13, č. 7 (2013), s. 1413-21
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23407647 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20131002 $b ABA008
- 991 __
- $a 20180404151350 $b ABA008
- 999 __
- $a ok $b bmc $g 995695 $s 830053
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 13 $c 7 $d 1413-21 $i 1473-0189 $m Lab on a chip $n Lab chip $x MED00169252
- LZP __
- $a Pubmed-20131002