-
Something wrong with this record ?
Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists
S. Basu, JC. Leonard, N. Desai, DA. Mavridou, KH. Tang, AD. Goddard, ML. Ginger, J. Lukeš, JW. Allen,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 2002 to 2015
Freely Accessible Science Journals
from 2002 to 2015
PubMed Central
from 2002 to 2015
Europe PubMed Central
from 2002 to 2015
Open Access Digital Library
from 2002-02-01
PubMed
23264646
DOI
10.1128/ec.00304-12
Knihovny.cz E-resources
- MeSH
- Cytochromes c chemistry MeSH
- Phylogeny MeSH
- Gene Knockdown Techniques MeSH
- Kinetics MeSH
- Oxygen chemistry MeSH
- Mitochondrial Proteins chemistry genetics MeSH
- Mitochondria enzymology ultrastructure MeSH
- Evolution, Molecular MeSH
- Mutagenesis, Site-Directed MeSH
- Oxidation-Reduction MeSH
- Oxidants MeSH
- Oxidoreductases chemistry genetics MeSH
- Protozoan Proteins chemistry genetics MeSH
- RNA Interference MeSH
- Protein Folding MeSH
- Amino Acid Substitution MeSH
- Protein Transport MeSH
- Trypanosoma brucei brucei cytology enzymology MeSH
- Mitochondrial Swelling MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In yeast (Saccharomyces cerevisiae) and animals, the sulfhydryl oxidase Erv1 functions with Mia40 in the import and oxidative folding of numerous cysteine-rich proteins in the mitochondrial intermembrane space (IMS). Erv1 is also required for Fe-S cluster assembly in the cytosol, which uses at least one mitochondrially derived precursor. Here, we characterize an essential Erv1 orthologue from the protist Trypanosoma brucei (TbERV1), which naturally lacks a Mia40 homolog. We report kinetic parameters for physiologically relevant oxidants cytochrome c and O(2), unexpectedly find O(2) and cytochrome c are reduced simultaneously, and demonstrate that efficient reduction of O(2) by TbERV1 is not dependent upon a simple O(2) channel defined by conserved histidine and tyrosine residues. Massive mitochondrial swelling following TbERV1 RNA interference (RNAi) provides evidence that trypanosome Erv1 functions in IMS protein import despite the natural absence of the key player in the yeast and animal import pathways, Mia40. This suggests significant evolutionary divergence from a recently established paradigm in mitochondrial cell biology. Phylogenomic profiling of genes also points to a conserved role for TbERV1 in cytosolic Fe-S cluster assembly. Conversely, loss of genes implicated in precursor delivery for cytosolic Fe-S assembly in Entamoeba, Trichomonas, and Giardia suggests fundamental differences in intracellular trafficking pathways for activated iron or sulfur species in anaerobic versus aerobic eukaryotes.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13031751
- 003
- CZ-PrNML
- 005
- 20131004112736.0
- 007
- ta
- 008
- 131002s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1128/EC.00304-12 $2 doi
- 035 __
- $a (PubMed)23264646
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Basu, Somsuvro $u Biology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
- 245 10
- $a Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists / $c S. Basu, JC. Leonard, N. Desai, DA. Mavridou, KH. Tang, AD. Goddard, ML. Ginger, J. Lukeš, JW. Allen,
- 520 9_
- $a In yeast (Saccharomyces cerevisiae) and animals, the sulfhydryl oxidase Erv1 functions with Mia40 in the import and oxidative folding of numerous cysteine-rich proteins in the mitochondrial intermembrane space (IMS). Erv1 is also required for Fe-S cluster assembly in the cytosol, which uses at least one mitochondrially derived precursor. Here, we characterize an essential Erv1 orthologue from the protist Trypanosoma brucei (TbERV1), which naturally lacks a Mia40 homolog. We report kinetic parameters for physiologically relevant oxidants cytochrome c and O(2), unexpectedly find O(2) and cytochrome c are reduced simultaneously, and demonstrate that efficient reduction of O(2) by TbERV1 is not dependent upon a simple O(2) channel defined by conserved histidine and tyrosine residues. Massive mitochondrial swelling following TbERV1 RNA interference (RNAi) provides evidence that trypanosome Erv1 functions in IMS protein import despite the natural absence of the key player in the yeast and animal import pathways, Mia40. This suggests significant evolutionary divergence from a recently established paradigm in mitochondrial cell biology. Phylogenomic profiling of genes also points to a conserved role for TbERV1 in cytosolic Fe-S cluster assembly. Conversely, loss of genes implicated in precursor delivery for cytosolic Fe-S assembly in Entamoeba, Trichomonas, and Giardia suggests fundamental differences in intracellular trafficking pathways for activated iron or sulfur species in anaerobic versus aerobic eukaryotes.
- 650 _2
- $a substituce aminokyselin $7 D019943
- 650 _2
- $a cytochromy c $x chemie $7 D045304
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a genový knockdown $7 D055785
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a mitochondrie $x enzymologie $x ultrastruktura $7 D008928
- 650 _2
- $a mitochondriální proteiny $x chemie $x genetika $7 D024101
- 650 _2
- $a zduření mitochondrií $7 D008933
- 650 _2
- $a mutageneze cílená $7 D016297
- 650 _2
- $a oxidancia $7 D016877
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a oxidoreduktasy $x chemie $x genetika $7 D010088
- 650 _2
- $a kyslík $x chemie $7 D010100
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a sbalování proteinů $7 D017510
- 650 _2
- $a transport proteinů $7 D021381
- 650 _2
- $a protozoální proteiny $x chemie $x genetika $7 D015800
- 650 _2
- $a RNA interference $7 D034622
- 650 _2
- $a Trypanosoma brucei brucei $x cytologie $x enzymologie $7 D014346
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Leonard, Joanne C $u -
- 700 1_
- $a Desai, Nishal $u -
- 700 1_
- $a Mavridou, Despoina A I $u -
- 700 1_
- $a Tang, Kong Ho $u -
- 700 1_
- $a Goddard, Alan D $u -
- 700 1_
- $a Ginger, Michael L $u -
- 700 1_
- $a Lukeš, Julius $u -
- 700 1_
- $a Allen, James W A $u - $7 gn_A_00004460
- 773 0_
- $w MED00007011 $t Eukaryotic cell $x 1535-9786 $g Roč. 12, č. 2 (2013), s. 343-55
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23264646 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20131002 $b ABA008
- 991 __
- $a 20131004113254 $b ABA008
- 999 __
- $a ok $b bmc $g 995838 $s 830196
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 12 $c 2 $d 343-55 $i 1535-9786 $m Eukaryotic cell $n Eukaryot Cell $x MED00007011
- LZP __
- $a Pubmed-20131002