Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Automated decision support system for tuberculosis digital images using evolutionary learning machines [Système d'aide à la décision automatisé pour des images numériques de tuberculose utilisant les machines à enseigner évolutionnaires]

E. Priya, S. Srinivasan

. 2013 ; 9 (2) : 3-8.

Language English Country Czech Republic Media elektronický zdroj

Background: Tuberculosis (TB) is a major cause of illness and death in many countries, especially in Asia and Africa. Repeated tests of microscopic examination are needed to be performed for early detection of the disease. Hence there is a need to automate the diagnostic process for improvement in the sensitivity and accuracy of the test. Objective: To automate the decision support system for tuberculosis digital images using histogram based statistical features and evolutionary based extreme learning machines. Materials and methods: The sputum smear positive and negative images recorded under standard image acquisition protocol are subjected to histogram based feature extraction technique. Most significant features are selected using student ‘t’ test. These significant features are further used as input to the differential evolutionary extreme learning machine classifier. Results: Results demonstrate that the histogram based significant features are able to differentiate TB positive and negative images with a higher specificity and accuracy. Conclusion: The methodology used in this work seems to be useful for the automated analysis of TB sputum smear images in mass screening disorders such as pulmonary tuberculosis.

Système d'aide à la décision automatisé pour des images numériques de tuberculose utilisant les machines à enseigner évolutionnaires

Automated decision support system for tuberculosis digital images using evolutionary learning machines [elektronický zdroj] /

References provided by Crossref.org

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc14040309
003      
CZ-PrNML
005      
20161031130909.0
007      
cr|cn|
008      
140106s2013 xr ad fs 000 0eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2013.09.2.2 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng $b fre
044    __
$a xr
100    1_
$a Priya, E. $u Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chennai
245    10
$a Automated decision support system for tuberculosis digital images using evolutionary learning machines $h [elektronický zdroj] / $c E. Priya, S. Srinivasan
246    31
$a Système d'aide à la décision automatisé pour des images numériques de tuberculose utilisant les machines à enseigner évolutionnaires
504    __
$a Literatura
520    9_
$a Background: Tuberculosis (TB) is a major cause of illness and death in many countries, especially in Asia and Africa. Repeated tests of microscopic examination are needed to be performed for early detection of the disease. Hence there is a need to automate the diagnostic process for improvement in the sensitivity and accuracy of the test. Objective: To automate the decision support system for tuberculosis digital images using histogram based statistical features and evolutionary based extreme learning machines. Materials and methods: The sputum smear positive and negative images recorded under standard image acquisition protocol are subjected to histogram based feature extraction technique. Most significant features are selected using student ‘t’ test. These significant features are further used as input to the differential evolutionary extreme learning machine classifier. Results: Results demonstrate that the histogram based significant features are able to differentiate TB positive and negative images with a higher specificity and accuracy. Conclusion: The methodology used in this work seems to be useful for the automated analysis of TB sputum smear images in mass screening disorders such as pulmonary tuberculosis.
650    _2
$a lidé $7 D006801
650    12
$a tuberkulóza $x diagnóza $7 D014376
650    12
$a časná diagnóza $7 D042241
650    12
$a počítače $x využití $7 D003201
650    12
$a sputum $x mikrobiologie $7 D013183
650    _2
$a statistika jako téma $7 D013223
650    _2
$a senzitivita a specificita $7 D012680
700    1_
$a Srinivasan, S. $u Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chennai
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 9, č. 2 (2013), s. 3-8 $w MED00173462
856    41
$u http://www.ejbi.org/img/ejbi/2013/2/Priya_en.pdf $y plný text volně přístupný
910    __
$a ABA008 $z 0 $y 4
990    __
$a 20140105160254 $b ABA008
991    __
$a 20161031130833 $b ABA008
999    __
$a ok $b bmc $g 1004716 $s 838814
BAS    __
$a 3 $a 4
BMC    __
$a 2013 $b 9 $c 2 $d 3-8 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK185 $d 20140203 $a NLK 2014-03/vt

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...