-
Something wrong with this record ?
Automated decision support system for tuberculosis digital images using evolutionary learning machines [Système d'aide à la décision automatisé pour des images numériques de tuberculose utilisant les machines à enseigner évolutionnaires]
E. Priya, S. Srinivasan
Language English Country Czech Republic Media elektronický zdroj
- MeSH
- Early Diagnosis * MeSH
- Humans MeSH
- Computers * utilization MeSH
- Sensitivity and Specificity MeSH
- Sputum * microbiology MeSH
- Statistics as Topic MeSH
- Tuberculosis * diagnosis MeSH
- Check Tag
- Humans MeSH
Background: Tuberculosis (TB) is a major cause of illness and death in many countries, especially in Asia and Africa. Repeated tests of microscopic examination are needed to be performed for early detection of the disease. Hence there is a need to automate the diagnostic process for improvement in the sensitivity and accuracy of the test. Objective: To automate the decision support system for tuberculosis digital images using histogram based statistical features and evolutionary based extreme learning machines. Materials and methods: The sputum smear positive and negative images recorded under standard image acquisition protocol are subjected to histogram based feature extraction technique. Most significant features are selected using student ‘t’ test. These significant features are further used as input to the differential evolutionary extreme learning machine classifier. Results: Results demonstrate that the histogram based significant features are able to differentiate TB positive and negative images with a higher specificity and accuracy. Conclusion: The methodology used in this work seems to be useful for the automated analysis of TB sputum smear images in mass screening disorders such as pulmonary tuberculosis.
Système d'aide à la décision automatisé pour des images numériques de tuberculose utilisant les machines à enseigner évolutionnaires
Automated decision support system for tuberculosis digital images using evolutionary learning machines [elektronický zdroj] /
References provided by Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14040309
- 003
- CZ-PrNML
- 005
- 20161031130909.0
- 007
- cr|cn|
- 008
- 140106s2013 xr ad fs 000 0eng||
- 009
- eAR
- 024 7_
- $a 10.24105/ejbi.2013.09.2.2 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng $b fre
- 044 __
- $a xr
- 100 1_
- $a Priya, E. $u Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chennai
- 245 10
- $a Automated decision support system for tuberculosis digital images using evolutionary learning machines $h [elektronický zdroj] / $c E. Priya, S. Srinivasan
- 246 31
- $a Système d'aide à la décision automatisé pour des images numériques de tuberculose utilisant les machines à enseigner évolutionnaires
- 504 __
- $a Literatura
- 520 9_
- $a Background: Tuberculosis (TB) is a major cause of illness and death in many countries, especially in Asia and Africa. Repeated tests of microscopic examination are needed to be performed for early detection of the disease. Hence there is a need to automate the diagnostic process for improvement in the sensitivity and accuracy of the test. Objective: To automate the decision support system for tuberculosis digital images using histogram based statistical features and evolutionary based extreme learning machines. Materials and methods: The sputum smear positive and negative images recorded under standard image acquisition protocol are subjected to histogram based feature extraction technique. Most significant features are selected using student ‘t’ test. These significant features are further used as input to the differential evolutionary extreme learning machine classifier. Results: Results demonstrate that the histogram based significant features are able to differentiate TB positive and negative images with a higher specificity and accuracy. Conclusion: The methodology used in this work seems to be useful for the automated analysis of TB sputum smear images in mass screening disorders such as pulmonary tuberculosis.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a tuberkulóza $x diagnóza $7 D014376
- 650 12
- $a časná diagnóza $7 D042241
- 650 12
- $a počítače $x využití $7 D003201
- 650 12
- $a sputum $x mikrobiologie $7 D013183
- 650 _2
- $a statistika jako téma $7 D013223
- 650 _2
- $a senzitivita a specificita $7 D012680
- 700 1_
- $a Srinivasan, S. $u Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chennai
- 773 0_
- $t European journal for biomedical informatics $x 1801-5603 $g Roč. 9, č. 2 (2013), s. 3-8 $w MED00173462
- 856 41
- $u http://www.ejbi.org/img/ejbi/2013/2/Priya_en.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $z 0 $y 4
- 990 __
- $a 20140105160254 $b ABA008
- 991 __
- $a 20161031130833 $b ABA008
- 999 __
- $a ok $b bmc $g 1004716 $s 838814
- BAS __
- $a 3 $a 4
- BMC __
- $a 2013 $b 9 $c 2 $d 3-8 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
- LZP __
- $c NLK185 $d 20140203 $a NLK 2014-03/vt