-
Je něco špatně v tomto záznamu ?
Comparison of intelligent computing techniques for classification of clinical EEG signals [Comparaison de techniques informatiques intelligentes pour la classification des signaux EEG cliniques]
D. Najumnissa, T. R. Rangaswamy
Jazyk angličtina Země Česko Médium elektronický zdroj
- MeSH
- elektroencefalografie * klasifikace přístrojové vybavení statistika a číselné údaje MeSH
- epilepsie * diagnóza klasifikace MeSH
- lidé MeSH
- počítače * statistika a číselné údaje využití MeSH
- počítačové systémy statistika a číselné údaje využití MeSH
- statistika jako téma MeSH
- Check Tag
- lidé MeSH
Objective: The objective of this work is to develop efficient classification systems using intelligent computing techniques for classification of normal and abnormal EEG signals. Methods: In this work, EEG recordings were carried out on volunteers (N=170). The features for classification of clinical EEG signals were extracted using wavelet transform and the feature selection was carried out using Principal Component Analysis. Intelligent techniques like Back Propagation Network (BPN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Particle Swarm Optimization Neural network (PSONN) and Radial Basis function Neural network (RBFNN) were trained for diagnosing seizures. Further, the performance of the developed classifiers was compared. Results: Results demonstrate that RBFNN classifies normal and abnormal EEG signals better than the other methods. It appears that the RBFNN is able to detect Generalized Tonic-Clonic Seizure (GTCS) more efficiently than the Complex Partial Seizures (CPS). Positive predictive value was better in PSONN and ANFIS than BPN method. Conclusions: It appears that the combination of Wavelet transform method and PCA derived features along with RBFNN classifier is efficient for automated EEG signal classification.
Comparaison de techniques informatiques intelligentes pour la classification des signaux EEG cliniques
Comparison of intelligent computing techniques for classification of clinical EEG signals [elektronický zdroj] /
Citace poskytuje Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14040320
- 003
- CZ-PrNML
- 005
- 20161031130413.0
- 007
- cr|cn|
- 008
- 140106s2013 xr da fs 000 0eng||
- 009
- eAR
- 024 7_
- $a 10.24105/ejbi.2013.09.2.7 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng $b fre
- 044 __
- $a xr
- 100 1_
- $a Najumnissa, D. $u Department of Electronics and Instrumentation Engineering B.S.Abdur Rahman University, India
- 245 10
- $a Comparison of intelligent computing techniques for classification of clinical EEG signals $h [elektronický zdroj] / $c D. Najumnissa, T. R. Rangaswamy
- 246 31
- $a Comparaison de techniques informatiques intelligentes pour la classification des signaux EEG cliniques
- 504 __
- $a Literatura
- 520 9_
- $a Objective: The objective of this work is to develop efficient classification systems using intelligent computing techniques for classification of normal and abnormal EEG signals. Methods: In this work, EEG recordings were carried out on volunteers (N=170). The features for classification of clinical EEG signals were extracted using wavelet transform and the feature selection was carried out using Principal Component Analysis. Intelligent techniques like Back Propagation Network (BPN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Particle Swarm Optimization Neural network (PSONN) and Radial Basis function Neural network (RBFNN) were trained for diagnosing seizures. Further, the performance of the developed classifiers was compared. Results: Results demonstrate that RBFNN classifies normal and abnormal EEG signals better than the other methods. It appears that the RBFNN is able to detect Generalized Tonic-Clonic Seizure (GTCS) more efficiently than the Complex Partial Seizures (CPS). Positive predictive value was better in PSONN and ANFIS than BPN method. Conclusions: It appears that the combination of Wavelet transform method and PCA derived features along with RBFNN classifier is efficient for automated EEG signal classification.
- 650 _2
- $a počítačové systémy $x statistika a číselné údaje $x využití $7 D003199
- 650 12
- $a počítače $x statistika a číselné údaje $x využití $7 D003201
- 650 12
- $a elektroencefalografie $x klasifikace $x přístrojové vybavení $x statistika a číselné údaje $7 D004569
- 650 _2
- $a statistika jako téma $7 D013223
- 650 12
- $a epilepsie $x diagnóza $x klasifikace $7 D004827
- 650 _2
- $a lidé $7 D006801
- 700 1_
- $a Rangaswamy, T. R. $u Department of Electronics and Instrumentation Engineering B.S.Abdur Rahman University, India
- 773 0_
- $t European journal for biomedical informatics $x 1801-5603 $g Roč. 9, č. 2 (2013), s. 42-51 $w MED00173462
- 856 41
- $u http://www.ejbi.org/img/ejbi/2013/2/Najumnissa_en.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $z 0 $y 4
- 990 __
- $a 20140105160254 $b ABA008
- 991 __
- $a 20161031130337 $b ABA008
- 999 __
- $a ok $b bmc $g 1004727 $s 838825
- BAS __
- $a 3 $a 4
- BMC __
- $a 2013 $b 9 $c 2 $d 42-51 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
- LZP __
- $c NLK185 $d 20140206 $a NLK 2014-03/vt