Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Comparison of intelligent computing techniques for classification of clinical EEG signals [Comparaison de techniques informatiques intelligentes pour la classification des signaux EEG cliniques]

D. Najumnissa, T. R. Rangaswamy

. 2013 ; 9 (2) : 42-51.

Jazyk angličtina Země Česko Médium elektronický zdroj

Perzistentní odkaz   https://www.medvik.cz/link/bmc14040320

Objective: The objective of this work is to develop efficient classification systems using intelligent computing techniques for classification of normal and abnormal EEG signals. Methods: In this work, EEG recordings were carried out on volunteers (N=170). The features for classification of clinical EEG signals were extracted using wavelet transform and the feature selection was carried out using Principal Component Analysis. Intelligent techniques like Back Propagation Network (BPN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Particle Swarm Optimization Neural network (PSONN) and Radial Basis function Neural network (RBFNN) were trained for diagnosing seizures. Further, the performance of the developed classifiers was compared. Results: Results demonstrate that RBFNN classifies normal and abnormal EEG signals better than the other methods. It appears that the RBFNN is able to detect Generalized Tonic-Clonic Seizure (GTCS) more efficiently than the Complex Partial Seizures (CPS). Positive predictive value was better in PSONN and ANFIS than BPN method. Conclusions: It appears that the combination of Wavelet transform method and PCA derived features along with RBFNN classifier is efficient for automated EEG signal classification.

Comparaison de techniques informatiques intelligentes pour la classification des signaux EEG cliniques

Comparison of intelligent computing techniques for classification of clinical EEG signals [elektronický zdroj] /

Citace poskytuje Crossref.org

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc14040320
003      
CZ-PrNML
005      
20161031130413.0
007      
cr|cn|
008      
140106s2013 xr da fs 000 0eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2013.09.2.7 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng $b fre
044    __
$a xr
100    1_
$a Najumnissa, D. $u Department of Electronics and Instrumentation Engineering B.S.Abdur Rahman University, India
245    10
$a Comparison of intelligent computing techniques for classification of clinical EEG signals $h [elektronický zdroj] / $c D. Najumnissa, T. R. Rangaswamy
246    31
$a Comparaison de techniques informatiques intelligentes pour la classification des signaux EEG cliniques
504    __
$a Literatura
520    9_
$a Objective: The objective of this work is to develop efficient classification systems using intelligent computing techniques for classification of normal and abnormal EEG signals. Methods: In this work, EEG recordings were carried out on volunteers (N=170). The features for classification of clinical EEG signals were extracted using wavelet transform and the feature selection was carried out using Principal Component Analysis. Intelligent techniques like Back Propagation Network (BPN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Particle Swarm Optimization Neural network (PSONN) and Radial Basis function Neural network (RBFNN) were trained for diagnosing seizures. Further, the performance of the developed classifiers was compared. Results: Results demonstrate that RBFNN classifies normal and abnormal EEG signals better than the other methods. It appears that the RBFNN is able to detect Generalized Tonic-Clonic Seizure (GTCS) more efficiently than the Complex Partial Seizures (CPS). Positive predictive value was better in PSONN and ANFIS than BPN method. Conclusions: It appears that the combination of Wavelet transform method and PCA derived features along with RBFNN classifier is efficient for automated EEG signal classification.
650    _2
$a počítačové systémy $x statistika a číselné údaje $x využití $7 D003199
650    12
$a počítače $x statistika a číselné údaje $x využití $7 D003201
650    12
$a elektroencefalografie $x klasifikace $x přístrojové vybavení $x statistika a číselné údaje $7 D004569
650    _2
$a statistika jako téma $7 D013223
650    12
$a epilepsie $x diagnóza $x klasifikace $7 D004827
650    _2
$a lidé $7 D006801
700    1_
$a Rangaswamy, T. R. $u Department of Electronics and Instrumentation Engineering B.S.Abdur Rahman University, India
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 9, č. 2 (2013), s. 42-51 $w MED00173462
856    41
$u http://www.ejbi.org/img/ejbi/2013/2/Najumnissa_en.pdf $y plný text volně přístupný
910    __
$a ABA008 $z 0 $y 4
990    __
$a 20140105160254 $b ABA008
991    __
$a 20161031130337 $b ABA008
999    __
$a ok $b bmc $g 1004727 $s 838825
BAS    __
$a 3 $a 4
BMC    __
$a 2013 $b 9 $c 2 $d 42-51 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK185 $d 20140206 $a NLK 2014-03/vt

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...