• Something wrong with this record ?

Real encoded genetic algorithm and response surface methodology to optimize production of an indolizidine alkaloid, swainsonine, from Metarhizium anisopliae

D. Singh, G. Kaur,

. 2013 ; 58 (5) : 393-401.

Language English Country Czech Republic

Document type Journal Article, Research Support, Non-U.S. Gov't

Response surface methodology (RSM) and artificial neural network-real encoded genetic algorithm (ANN-REGA) were employed to develop a process for fermentative swainsonine production from Metarhizium anisopliae (ARSEF 1724). The effect of finally screened process variables viz. inoculum size, oatmeal extract, glucose, and CaCl2 were investigated through central composite design and were further utilized for training sets in ANN with training and test R values of 0.99 and 0.94, respectively. ANN-REGA was finally employed to simulate the predictive swainsonine production with best evolved media composition. ANN-REGA predicted a more precise fermentation model with 103 % (shake flask) increase in alkaloid production compared to 75.62 % (shake flask) obtained with RSM model upon validation.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14049961
003      
CZ-PrNML
005      
20140415095548.0
007      
ta
008      
140324s2013 xr f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s12223-012-0220-8 $2 doi
035    __
$a (PubMed)23315485
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xr
100    1_
$a Singh, Digar
245    10
$a Real encoded genetic algorithm and response surface methodology to optimize production of an indolizidine alkaloid, swainsonine, from Metarhizium anisopliae / $c D. Singh, G. Kaur,
520    9_
$a Response surface methodology (RSM) and artificial neural network-real encoded genetic algorithm (ANN-REGA) were employed to develop a process for fermentative swainsonine production from Metarhizium anisopliae (ARSEF 1724). The effect of finally screened process variables viz. inoculum size, oatmeal extract, glucose, and CaCl2 were investigated through central composite design and were further utilized for training sets in ANN with training and test R values of 0.99 and 0.94, respectively. ANN-REGA was finally employed to simulate the predictive swainsonine production with best evolved media composition. ANN-REGA predicted a more precise fermentation model with 103 % (shake flask) increase in alkaloid production compared to 75.62 % (shake flask) obtained with RSM model upon validation.
650    _2
$a alkaloidy $x izolace a purifikace $x metabolismus $7 D000470
650    _2
$a biotechnologie $x metody $7 D001709
650    _2
$a počet mikrobiálních kolonií $7 D015169
650    _2
$a kultivační média $x chemie $7 D003470
650    _2
$a fermentace $7 D005285
650    _2
$a Metarhizium $x genetika $x metabolismus $7 D052981
650    _2
$a neuronové sítě $7 D016571
650    _2
$a swainsonin $x izolace a purifikace $x metabolismus $7 D017026
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kaur, Gurvinder $u -
773    0_
$w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 58, č. 5 (2013), s. 393-401
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23315485 $y Pubmed
910    __
$a ABA008 $b online $c sign $y a $z 0
990    __
$a 20140324 $b ABA008
991    __
$a 20140415095646 $b ABA008
999    __
$a ok $b bmc $g 1019664 $s 848531
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 58 $c 5 $d 393-401 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
LZP    __
$a Pubmed-20140324

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...