-
Je něco špatně v tomto záznamu ?
Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae)
V. Mahelka, D. Kopecky, BR. Baum,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1983 do Před 1 rokem
PubMed Central
od 2008
Open Access Digital Library
od 1983-12-01
Open Access Digital Library
od 1983-12-01
Oxford Journals Open Access Collection
od 1996-01-01
Oxford Journals Open Access Collection
od 2002
ROAD: Directory of Open Access Scholarly Resources
od 1983
PubMed
23741054
DOI
10.1093/molbev/mst106
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin MeSH
- fylogeneze * MeSH
- genetické lokusy MeSH
- genom rostlinný * MeSH
- hybridizace in situ MeSH
- konformace nukleové kyseliny MeSH
- lipnicovité klasifikace genetika MeSH
- mezerníky ribozomální DNA klasifikace genetika MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- ploidie MeSH
- RNA ribozomální 5S klasifikace genetika MeSH
- RNA ribozomální klasifikace genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- vznik druhů (genetika) MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We employed sequencing of clones and in situ hybridization (genomic and fluorescent in situ hybridization [GISH and rDNA-FISH]) to characterize both the sequence variation and genomic organization of 45S (herein ITS1-5.8S-ITS2 region) and 5S (5S gene + nontranscribed spacer) ribosomal DNA (rDNA) families in the allohexaploid grass Thinopyrum intermedium. Both rDNA families are organized within several rDNA loci within all three subgenomes of the allohexaploid species. Both families have undergone different patterns of evolution. The 45S rDNA family has evolved in a concerted manner: internal transcribed spacer (ITS) sequences residing within the arrays of two subgenomes out of three got homogenized toward one major ribotype, whereas the third subgenome contained a minor proportion of distinct unhomogenized copies. Homogenization mechanisms such as unequal crossover and/or gene conversion were coupled with the loss of certain 45S rDNA loci. Unlike in the 45S family, the data suggest that neither interlocus homogenization among homeologous chromosomes nor locus loss occurred in 5S rDNA. Consistently with other Triticeae, the 5S rDNA family in intermediate wheatgrass comprised two distinct array types-the long- and short-spacer unit classes. Within the long and short units, we distinguished five and three different types, respectively, likely representing homeologous unit classes donated by putative parental species. Although the major ITS ribotype corresponds in our phylogenetic analysis to the E-genome species, the minor ribotype corresponds to Dasypyrum. 5S sequences suggested the contributions from Pseudoroegneria, Dasypyrum, and Aegilops. The contribution from Aegilops to the intermediate wheatgrass' genome is a new finding with implications in wheat improvement. We discuss rDNA evolution and potential origin of intermediate wheatgrass.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14051017
- 003
- CZ-PrNML
- 005
- 20140411110550.0
- 007
- ta
- 008
- 140401s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/molbev/mst106 $2 doi
- 035 __
- $a (PubMed)23741054
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mahelka, Václav
- 245 10
- $a Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae) / $c V. Mahelka, D. Kopecky, BR. Baum,
- 520 9_
- $a We employed sequencing of clones and in situ hybridization (genomic and fluorescent in situ hybridization [GISH and rDNA-FISH]) to characterize both the sequence variation and genomic organization of 45S (herein ITS1-5.8S-ITS2 region) and 5S (5S gene + nontranscribed spacer) ribosomal DNA (rDNA) families in the allohexaploid grass Thinopyrum intermedium. Both rDNA families are organized within several rDNA loci within all three subgenomes of the allohexaploid species. Both families have undergone different patterns of evolution. The 45S rDNA family has evolved in a concerted manner: internal transcribed spacer (ITS) sequences residing within the arrays of two subgenomes out of three got homogenized toward one major ribotype, whereas the third subgenome contained a minor proportion of distinct unhomogenized copies. Homogenization mechanisms such as unequal crossover and/or gene conversion were coupled with the loss of certain 45S rDNA loci. Unlike in the 45S family, the data suggest that neither interlocus homogenization among homeologous chromosomes nor locus loss occurred in 5S rDNA. Consistently with other Triticeae, the 5S rDNA family in intermediate wheatgrass comprised two distinct array types-the long- and short-spacer unit classes. Within the long and short units, we distinguished five and three different types, respectively, likely representing homeologous unit classes donated by putative parental species. Although the major ITS ribotype corresponds in our phylogenetic analysis to the E-genome species, the minor ribotype corresponds to Dasypyrum. 5S sequences suggested the contributions from Pseudoroegneria, Dasypyrum, and Aegilops. The contribution from Aegilops to the intermediate wheatgrass' genome is a new finding with implications in wheat improvement. We discuss rDNA evolution and potential origin of intermediate wheatgrass.
- 650 _2
- $a zemědělství $7 D000383
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a chromozomy rostlin $7 D032461
- 650 _2
- $a mezerníky ribozomální DNA $x klasifikace $x genetika $7 D021903
- 650 12
- $a molekulární evoluce $7 D019143
- 650 _2
- $a genetické lokusy $7 D056426
- 650 _2
- $a vznik druhů (genetika) $7 D049810
- 650 12
- $a genom rostlinný $7 D018745
- 650 _2
- $a hybridizace in situ $7 D017403
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 12
- $a fylogeneze $7 D010802
- 650 _2
- $a ploidie $7 D011003
- 650 _2
- $a lipnicovité $x klasifikace $x genetika $7 D006109
- 650 _2
- $a RNA ribozomální $x klasifikace $x genetika $7 D012335
- 650 _2
- $a RNA ribozomální 5S $x klasifikace $x genetika $7 D012341
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kopecky, David $u -
- 700 1_
- $a Baum, Bernard R $u -
- 773 0_
- $w MED00006601 $t Molecular biology and evolution $x 1537-1719 $g Roč. 30, č. 9 (2013), s. 2065-86
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23741054 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140401 $b ABA008
- 991 __
- $a 20140411110640 $b ABA008
- 999 __
- $a ok $b bmc $g 1018153 $s 849597
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 30 $c 9 $d 2065-86 $i 1537-1719 $m Molecular biology and evolution $n Mol Biol Evol $x MED00006601
- LZP __
- $a Pubmed-20140401