-
Something wrong with this record ?
All hematopoietic stem cells engraft in submyeloablatively irradiated mice
K. Forgacova, F. Savvulidi, L. Sefc, J. Linhartova, E. Necas,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Whole-Body Irradiation methods MeSH
- Genetic Vectors MeSH
- Hematopoietic Stem Cells cytology metabolism radiation effects MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Gene Transfer Techniques MeSH
- Transduction, Genetic MeSH
- Hematopoietic Stem Cell Transplantation methods MeSH
- Bone Marrow Transplantation methods MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Significant controversy exists regarding the impact of hematopoietic stroma damage by irradiation on the efficiency of engraftment of intravenously transplanted stem cells. It was previously demonstrated that in normal syngenic mice, all intravenously transplanted donor stem cells, present in the bone marrow, compete equally with those of the host. In this study, we comprehensively compared the blood cell production derived from transplanted donor stem cells with that from the host stem cells surviving various doses of submyeloablative irradiation. We compared the partial chimerism resulting from transplantation with theoretical estimates that assumed transplantation efficiencies ranging from 100% to 20%. The highest level of consensus between the experimental and the theoretical results was 100% for homing and engraftment (ie, the utilization of all transplanted stem cells). These results point to a very potent mechanism through which intravenously administered hematopoietic stem cells are captured from circulation, engraft in the hematopoietic tissue, and contribute to blood cell production in irradiated recipients. The damage done to hematopoietic stroma and to the trabecular bone by submyeloablative doses of ionizing radiation does not negatively affect the homing and engraftment mechanisms of intravenously transplanted hematopoietic progenitor and stem cells.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14051187
- 003
- CZ-PrNML
- 005
- 20140408113013.0
- 007
- ta
- 008
- 140401s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbmt.2013.02.012 $2 doi
- 035 __
- $a (PubMed)23422843
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Forgacova, Katarina
- 245 10
- $a All hematopoietic stem cells engraft in submyeloablatively irradiated mice / $c K. Forgacova, F. Savvulidi, L. Sefc, J. Linhartova, E. Necas,
- 520 9_
- $a Significant controversy exists regarding the impact of hematopoietic stroma damage by irradiation on the efficiency of engraftment of intravenously transplanted stem cells. It was previously demonstrated that in normal syngenic mice, all intravenously transplanted donor stem cells, present in the bone marrow, compete equally with those of the host. In this study, we comprehensively compared the blood cell production derived from transplanted donor stem cells with that from the host stem cells surviving various doses of submyeloablative irradiation. We compared the partial chimerism resulting from transplantation with theoretical estimates that assumed transplantation efficiencies ranging from 100% to 20%. The highest level of consensus between the experimental and the theoretical results was 100% for homing and engraftment (ie, the utilization of all transplanted stem cells). These results point to a very potent mechanism through which intravenously administered hematopoietic stem cells are captured from circulation, engraft in the hematopoietic tissue, and contribute to blood cell production in irradiated recipients. The damage done to hematopoietic stroma and to the trabecular bone by submyeloablative doses of ionizing radiation does not negatively affect the homing and engraftment mechanisms of intravenously transplanted hematopoietic progenitor and stem cells.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a transplantace kostní dřeně $x metody $7 D016026
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a technika přenosu genů $7 D018014
- 650 _2
- $a genetické vektory $7 D005822
- 650 _2
- $a transplantace hematopoetických kmenových buněk $x metody $7 D018380
- 650 _2
- $a hematopoetické kmenové buňky $x cytologie $x metabolismus $x účinky záření $7 D006412
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a transdukce genetická $7 D014161
- 650 _2
- $a celotělové ozáření $x metody $7 D014916
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Savvulidi, Filipp $u -
- 700 1_
- $a Sefc, Ludek $u -
- 700 1_
- $a Linhartova, Jana $u -
- 700 1_
- $a Necas, Emanuel $u -
- 773 0_
- $w MED00008579 $t Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation $x 1523-6536 $g Roč. 19, č. 5 (2013), s. 713-9
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23422843 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140401 $b ABA008
- 991 __
- $a 20140408113101 $b ABA008
- 999 __
- $a ok $b bmc $g 1018323 $s 849767
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 19 $c 5 $d 713-9 $i 1523-6536 $m Biology of blood and marrow transplantation $n Biol Blood Marrow Transplant $x MED00008579
- LZP __
- $a Pubmed-20140401