-
Je něco špatně v tomto záznamu ?
Strand invasion by HLTF as a mechanism for template switch in fork rescue
P. Burkovics, M. Sebesta, D. Balogh, L. Haracska, L. Krejci,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
24198246
DOI
10.1093/nar/gkt1040
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy metabolismus MeSH
- DNA-helikasy metabolismus MeSH
- DNA chemie metabolismus MeSH
- forkhead transkripční faktory metabolismus MeSH
- genetické matrice MeSH
- jaderné proteiny metabolismus MeSH
- lidé MeSH
- poškození DNA * MeSH
- rekombinasa Rad51 metabolismus MeSH
- replikace DNA * MeSH
- replikační protein A metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stalling of replication forks at unrepaired DNA lesions can result in discontinuities opposite the damage in the newly synthesized DNA strand. Translesion synthesis or facilitating the copy from the newly synthesized strand of the sister duplex by template switching can overcome such discontinuities. During template switch, a new primer-template junction has to be formed and two mechanisms, including replication fork reversal and D-loop formation have been suggested. Genetic evidence indicates a major role for yeast Rad5 in template switch and that both Rad5 and its human orthologue, Helicase-like transcription factor (HLTF), a potential tumour suppressor can facilitate replication fork reversal. This study demonstrates the ability of HLTF and Rad5 to form a D-loop without requiring ATP binding and/or hydrolysis. We also show that this strand-pairing activity is independent of RAD51 in vitro and is not mechanistically related to that of another member of the SWI/SNF family, RAD54. In addition, the 3'-end of the invading strand in the D-loop can serve as a primer and is extended by DNA polymerase. Our data indicate that HLTF is involved in a RAD51-independent D-loop branch of template switch pathway that can promote repair of gaps formed during replication of damaged DNA.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14063857
- 003
- CZ-PrNML
- 005
- 20140707113040.0
- 007
- ta
- 008
- 140704s2014 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkt1040 $2 doi
- 035 __
- $a (PubMed)24198246
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Burkovics, Peter $u Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, HU-6726 Szeged, Hungary, Department of Biology, Masaryk University, Brno, Czech Republic, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic and International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-62500 Brno, Czech Republic.
- 245 10
- $a Strand invasion by HLTF as a mechanism for template switch in fork rescue / $c P. Burkovics, M. Sebesta, D. Balogh, L. Haracska, L. Krejci,
- 520 9_
- $a Stalling of replication forks at unrepaired DNA lesions can result in discontinuities opposite the damage in the newly synthesized DNA strand. Translesion synthesis or facilitating the copy from the newly synthesized strand of the sister duplex by template switching can overcome such discontinuities. During template switch, a new primer-template junction has to be formed and two mechanisms, including replication fork reversal and D-loop formation have been suggested. Genetic evidence indicates a major role for yeast Rad5 in template switch and that both Rad5 and its human orthologue, Helicase-like transcription factor (HLTF), a potential tumour suppressor can facilitate replication fork reversal. This study demonstrates the ability of HLTF and Rad5 to form a D-loop without requiring ATP binding and/or hydrolysis. We also show that this strand-pairing activity is independent of RAD51 in vitro and is not mechanistically related to that of another member of the SWI/SNF family, RAD54. In addition, the 3'-end of the invading strand in the D-loop can serve as a primer and is extended by DNA polymerase. Our data indicate that HLTF is involved in a RAD51-independent D-loop branch of template switch pathway that can promote repair of gaps formed during replication of damaged DNA.
- 650 _2
- $a adenosintrifosfatasy $x metabolismus $7 D000251
- 650 _2
- $a DNA $x chemie $x metabolismus $7 D004247
- 650 12
- $a poškození DNA $7 D004249
- 650 _2
- $a DNA-helikasy $x metabolismus $7 D004265
- 650 12
- $a replikace DNA $7 D004261
- 650 _2
- $a forkhead transkripční faktory $x metabolismus $7 D051858
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a jaderné proteiny $x metabolismus $7 D009687
- 650 _2
- $a rekombinasa Rad51 $x metabolismus $7 D051135
- 650 _2
- $a replikační protein A $x metabolismus $7 D051716
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x metabolismus $7 D029701
- 650 _2
- $a genetické matrice $7 D013698
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sebesta, Marek
- 700 1_
- $a Balogh, David
- 700 1_
- $a Haracska, Lajos
- 700 1_
- $a Krejci, Lumir
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 42, č. 3 (2014), s. 1711-20
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24198246 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140704 $b ABA008
- 991 __
- $a 20140707113329 $b ABA008
- 999 __
- $a ok $b bmc $g 1031341 $s 862589
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 42 $c 3 $d 1711-20 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20140704