• Je něco špatně v tomto záznamu ?

Duplex formation between the sRNA DsrA and rpoS mRNA is not sufficient for efficient RpoS synthesis at low temperature

H. Hämmerle, B. Večerek, A. Resch, U. Bläsi,

. 2013 ; 10 (12) : 1834-41.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc14074325

At low temperatures the Escherichia coli rpoS mRNA, encoding the stationary phase sigma factor RpoS, forms an intramolecular secondary structure (iss) that impedes translation initiation. Under these conditions the small RNA DsrA, which is stabilzed by Hfq, forms a duplex with rpoS mRNA sequences opposite of the ribosome-binding site (rbs). Both the DEAD box helicase CsdA and Hfq have been implicated in DsrA·rpoS duplex formation. Hfq binding to A-rich sequences in the rpoS leader has been suggested to restructure the mRNA, and thereby to accelerate DsrA·rpoS duplex formation, which, in turn, was deemed to free the rpoS rbs and to permit ribosome loading on the mRNA. Several experiments designed to elucidate the role of Hfq in DsrA-mediated translational activation of rpoS mRNA have been conducted in vitro. Here, we assessed RpoS synthesis in vivo to further study the role of Hfq in rpoS regulation. We show that RpoS synthesis was reduced when DsrA was ectopically overexpressed at 24 °C in the absence of Hfq despite of DsrA·rpoS duplex formation. This observation indicated that DsrA·rpoS annealing may not be sufficient for efficient ribosome loading on rpoS mRNA. In addition, a HfqG29A mutant protein was employed, which is deficient in binding to A-rich sequences present in the rpoS leader but proficient in DsrA binding. We show that DsrA·rpoS duplex formation occurs in the presence of the HfqG29A mutant protein at low temperature, whereas synthesis of RpoS was greatly diminished. RNase T1 footprinting studies of DsrA·rpoS duplexes in the absence and presence of Hfq or HfqG29A indicated that Hfq is required to resolve a stem-loop structure in the immediate coding region of rpoS mRNA. These in vivo studies corroborate the importance of the A-rich sequences in the rpoS leader and strongly suggest that Hfq, besides stabilizing DsrA and accelerating DsrA·rpoS duplex formation, is also required to convert the rpoS mRNA into a translationally competent form.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14074325
003      
CZ-PrNML
005      
20141007123031.0
007      
ta
008      
141006s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.4161/rna.27100 $2 doi
035    __
$a (PubMed)24448230
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hämmerle, Hermann $u Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria.
245    10
$a Duplex formation between the sRNA DsrA and rpoS mRNA is not sufficient for efficient RpoS synthesis at low temperature / $c H. Hämmerle, B. Večerek, A. Resch, U. Bläsi,
520    9_
$a At low temperatures the Escherichia coli rpoS mRNA, encoding the stationary phase sigma factor RpoS, forms an intramolecular secondary structure (iss) that impedes translation initiation. Under these conditions the small RNA DsrA, which is stabilzed by Hfq, forms a duplex with rpoS mRNA sequences opposite of the ribosome-binding site (rbs). Both the DEAD box helicase CsdA and Hfq have been implicated in DsrA·rpoS duplex formation. Hfq binding to A-rich sequences in the rpoS leader has been suggested to restructure the mRNA, and thereby to accelerate DsrA·rpoS duplex formation, which, in turn, was deemed to free the rpoS rbs and to permit ribosome loading on the mRNA. Several experiments designed to elucidate the role of Hfq in DsrA-mediated translational activation of rpoS mRNA have been conducted in vitro. Here, we assessed RpoS synthesis in vivo to further study the role of Hfq in rpoS regulation. We show that RpoS synthesis was reduced when DsrA was ectopically overexpressed at 24 °C in the absence of Hfq despite of DsrA·rpoS duplex formation. This observation indicated that DsrA·rpoS annealing may not be sufficient for efficient ribosome loading on rpoS mRNA. In addition, a HfqG29A mutant protein was employed, which is deficient in binding to A-rich sequences present in the rpoS leader but proficient in DsrA binding. We show that DsrA·rpoS duplex formation occurs in the presence of the HfqG29A mutant protein at low temperature, whereas synthesis of RpoS was greatly diminished. RNase T1 footprinting studies of DsrA·rpoS duplexes in the absence and presence of Hfq or HfqG29A indicated that Hfq is required to resolve a stem-loop structure in the immediate coding region of rpoS mRNA. These in vivo studies corroborate the importance of the A-rich sequences in the rpoS leader and strongly suggest that Hfq, besides stabilizing DsrA and accelerating DsrA·rpoS duplex formation, is also required to convert the rpoS mRNA into a translationally competent form.
650    _2
$a 5' nepřekládaná oblast $7 D020121
650    _2
$a bakteriální proteiny $x genetika $x metabolismus $7 D001426
650    _2
$a Escherichia coli $x genetika $7 D004926
650    _2
$a proteiny z Escherichia coli $x metabolismus $7 D029968
650    _2
$a regulace genové exprese u bakterií $7 D015964
650    _2
$a protein hostitelského faktoru 1 $x metabolismus $7 D035001
650    _2
$a mutace $7 D009154
650    _2
$a proteosyntéza $7 D014176
650    _2
$a bakteriální RNA $x genetika $7 D012329
650    _2
$a messenger RNA $x metabolismus $7 D012333
650    _2
$a malá nekódující RNA $x genetika $x metabolismus $7 D058727
650    _2
$a ribozomy $x metabolismus $7 D012270
650    _2
$a sigma faktor $x genetika $x metabolismus $7 D012808
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Večerek, Branislav $u Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria; Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4-Krč, Czech Republic.
700    1_
$a Resch, Armin $u Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria.
700    1_
$a Bläsi, Udo $u Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria.
773    0_
$w MED00181077 $t RNA biology $x 1555-8584 $g Roč. 10, č. 12 (2013), s. 1834-41
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24448230 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141006 $b ABA008
991    __
$a 20141007123509 $b ABA008
999    __
$a ok $b bmc $g 1042208 $s 873237
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 10 $c 12 $d 1834-41 $i 1555-8584 $m RNA biology $n RNA Biol $x MED00181077
LZP    __
$a Pubmed-20141006

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...