-
Je něco špatně v tomto záznamu ?
Remote physiological and GPS data processing in evaluation of physical activities
A. Procházka, S. Vaseghi, M. Yadollahi, O. Tupa, J. Mareš, O. Vyšata,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2003-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest)
od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- algoritmy MeSH
- cyklistika fyziologie MeSH
- geografické informační systémy * MeSH
- lidé MeSH
- počítačové zpracování signálu * MeSH
- regresní analýza MeSH
- srdeční frekvence fyziologie MeSH
- telemetrie metody MeSH
- zeměpis MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The monitoring of data from global positioning system (GPS) receivers and remote sensors of physiological and environmental data allow forming an information database for observed data processing. In this paper, we propose the use of such a database for the analysis of physical activities during cycling. The main idea of the proposed algorithm is to use cross-correlations between the heart rate and the altitude gradient to evaluate the delay between these variables and to study its time evolution. The data acquired during 22 identical cycling routes, each about 130 km long, include more than 6,700 segments of length 60 s recorded with varying sampling periods. General statistical and digital signal processing methods used include mathematical tools to reject gross errors, resampling using selected interpolation methods, digital filtering of noise signal components, and estimating cross-correlations between the position data and the physiological signals. The results of a regression between GPS and physiological data include the estimate of the time delay between the heart rate change and gradient altitude of about 7.5 s and its decrease during each training route.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14074378
- 003
- CZ-PrNML
- 005
- 20141009100618.0
- 007
- ta
- 008
- 141006s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11517-013-1134-6 $2 doi
- 035 __
- $a (PubMed)24366843
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Procházka, Aleš $u Department of Computing and Control Engineering, Institute of Chemical Technology in Prague, 166 28, Prague, Czech Republic, A.Prochazka@ieee.org.
- 245 10
- $a Remote physiological and GPS data processing in evaluation of physical activities / $c A. Procházka, S. Vaseghi, M. Yadollahi, O. Tupa, J. Mareš, O. Vyšata,
- 520 9_
- $a The monitoring of data from global positioning system (GPS) receivers and remote sensors of physiological and environmental data allow forming an information database for observed data processing. In this paper, we propose the use of such a database for the analysis of physical activities during cycling. The main idea of the proposed algorithm is to use cross-correlations between the heart rate and the altitude gradient to evaluate the delay between these variables and to study its time evolution. The data acquired during 22 identical cycling routes, each about 130 km long, include more than 6,700 segments of length 60 s recorded with varying sampling periods. General statistical and digital signal processing methods used include mathematical tools to reject gross errors, resampling using selected interpolation methods, digital filtering of noise signal components, and estimating cross-correlations between the position data and the physiological signals. The results of a regression between GPS and physiological data include the estimate of the time delay between the heart rate change and gradient altitude of about 7.5 s and its decrease during each training route.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a cyklistika $x fyziologie $7 D001642
- 650 12
- $a geografické informační systémy $7 D040362
- 650 _2
- $a zeměpis $7 D005843
- 650 _2
- $a srdeční frekvence $x fyziologie $7 D006339
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a regresní analýza $7 D012044
- 650 12
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a telemetrie $x metody $7 D013686
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Vaseghi, Saeed
- 700 1_
- $a Yadollahi, Mohammadreza
- 700 1_
- $a Tupa, Ondřej
- 700 1_
- $a Mareš, Jan
- 700 1_
- $a Vyšata, Oldřich
- 773 0_
- $w MED00003217 $t Medical & biological engineering & computing $x 1741-0444 $g Roč. 52, č. 4 (2014), s. 301-8
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24366843 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20141006 $b ABA008
- 991 __
- $a 20141009101007 $b ABA008
- 999 __
- $a ok $b bmc $g 1042261 $s 873290
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 52 $c 4 $d 301-8 $i 1741-0444 $m Medical & biological engineering & computing $n Med Biol Eng Comput $x MED00003217
- LZP __
- $a Pubmed-20141006