• Something wrong with this record ?

Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis

L. Canesi, G. Frenzilli, T. Balbi, M. Bernardeschi, C. Ciacci, S. Corsolini, C. Della Torre, R. Fabbri, C. Faleri, S. Focardi, P. Guidi, A. Kočan, A. Marcomini, M. Mariottini, M. Nigro, K. Pozo-Gallardo, L. Rocco, V. Scarcelli, A. Smerilli, I. Corsi,

. 2014 ; 153 (-) : 53-65.

Language English Country Netherlands

Document type Journal Article, Research Support, Non-U.S. Gov't

Despite the growing concern over the potential biological impact of nanoparticles (NPs) in the aquatic environment, little is known about their interactions with other pollutants. The bivalve Mytilus sp, largely utilized as a sentinel for marine contamination, has been shown to represent a significant target for different types of NP, including n-TiO2, one of the most widespread in use. In this work, the possible interactive effects of n-TiO2 and 2,3,7,8-TCDD, chosen as models of NP and organic contaminant, respectively, were investigated in Mytilus galloprovincialis. In vitro experiments with n-TiO2 and TCDD, alone and in combination, were carried out in different conditions (concentrations and times of exposure), depending on the target (hemocytes, gill cells and biopsies) and the endpoint measured. Mussels were also exposed in vivo to n-TiO2 (100 μg L(-1)) or to TCDD (0.25 μg L(-1)), alone and in combination, for 96 h. A wide range of biomarkers, from molecular to tissue level, were measured: lysosomal membrane stability and phagocytosis in hemocytes, ATP-binding cassette efflux transporters in gills (gene transcription and efflux activity), several biomarkers of genotoxicity in gill and digestive cells (DNA damage, random amplified polymorphic DNA-RAPD changes), lysosomal biomarkers and transcription of selected genes in the digestive gland. The results demonstrate that n-TiO2 and TCDD can exert synergistic or antagonistic effects, depending on experimental condition, cell/tissue and type of measured response. Some of these interactions may result from a significant increase in TCDD accumulation in whole mussel organisms in the presence of n-TiO2, indicating a Trojan horse effect. The results represent the most extensive data obtained so far on the sub-lethal effects of NPs and organic contaminants in aquatic organisms. Moreover, these data extend the knowledge on the molecular and cellular targets of NPs in bivalves.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14074404
003      
CZ-PrNML
005      
20141007104119.0
007      
ta
008      
141006s2014 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.aquatox.2013.11.002 $2 doi
035    __
$a (PubMed)24342350
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Canesi, Laura $u Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy.
245    10
$a Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis / $c L. Canesi, G. Frenzilli, T. Balbi, M. Bernardeschi, C. Ciacci, S. Corsolini, C. Della Torre, R. Fabbri, C. Faleri, S. Focardi, P. Guidi, A. Kočan, A. Marcomini, M. Mariottini, M. Nigro, K. Pozo-Gallardo, L. Rocco, V. Scarcelli, A. Smerilli, I. Corsi,
520    9_
$a Despite the growing concern over the potential biological impact of nanoparticles (NPs) in the aquatic environment, little is known about their interactions with other pollutants. The bivalve Mytilus sp, largely utilized as a sentinel for marine contamination, has been shown to represent a significant target for different types of NP, including n-TiO2, one of the most widespread in use. In this work, the possible interactive effects of n-TiO2 and 2,3,7,8-TCDD, chosen as models of NP and organic contaminant, respectively, were investigated in Mytilus galloprovincialis. In vitro experiments with n-TiO2 and TCDD, alone and in combination, were carried out in different conditions (concentrations and times of exposure), depending on the target (hemocytes, gill cells and biopsies) and the endpoint measured. Mussels were also exposed in vivo to n-TiO2 (100 μg L(-1)) or to TCDD (0.25 μg L(-1)), alone and in combination, for 96 h. A wide range of biomarkers, from molecular to tissue level, were measured: lysosomal membrane stability and phagocytosis in hemocytes, ATP-binding cassette efflux transporters in gills (gene transcription and efflux activity), several biomarkers of genotoxicity in gill and digestive cells (DNA damage, random amplified polymorphic DNA-RAPD changes), lysosomal biomarkers and transcription of selected genes in the digestive gland. The results demonstrate that n-TiO2 and TCDD can exert synergistic or antagonistic effects, depending on experimental condition, cell/tissue and type of measured response. Some of these interactions may result from a significant increase in TCDD accumulation in whole mussel organisms in the presence of n-TiO2, indicating a Trojan horse effect. The results represent the most extensive data obtained so far on the sub-lethal effects of NPs and organic contaminants in aquatic organisms. Moreover, these data extend the knowledge on the molecular and cellular targets of NPs in bivalves.
650    _2
$a zvířata $7 D000818
650    _2
$a biologické markery $x analýza $7 D015415
650    _2
$a poškození DNA $x účinky léků $7 D004249
650    _2
$a lékové interakce $7 D004347
650    _2
$a žábry $x účinky léků $7 D005880
650    _2
$a hemocyty $x účinky léků $7 D006434
650    _2
$a lyzozomy $x účinky léků $7 D008247
650    _2
$a Mytilus $x účinky léků $x genetika $x metabolismus $7 D049878
650    _2
$a nanočástice $x toxicita $7 D053758
650    _2
$a fagocytóza $x účinky léků $7 D010587
650    _2
$a technika náhodné amplifikace polymorfní DNA $7 D019105
650    _2
$a polychlorované dibenzodioxiny $x metabolismus $x toxicita $7 D000072317
650    _2
$a titan $x toxicita $7 D014025
650    _2
$a chemické látky znečišťující vodu $x metabolismus $x toxicita $7 D014874
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Frenzilli, Giada $u Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy. Electronic address: giada@biomed.unipi.it.
700    1_
$a Balbi, Teresa $u Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy.
700    1_
$a Bernardeschi, Margherita $u Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
700    1_
$a Ciacci, Caterina $u Dipartimento di Scienze della Terra, della Vita e dell'Ambiente-DiSTeVA, Università "Carlo Bo" di Urbino, Urbino, Italy.
700    1_
$a Corsolini, Simonetta $u Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy.
700    1_
$a Della Torre, Camilla $u Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy.
700    1_
$a Fabbri, Rita $u Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy.
700    1_
$a Faleri, Claudia $u Dipartimento di Scienze della Vita, Università di Siena, via Mattioli 4, Siena, Italy.
700    1_
$a Focardi, Silvano $u Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy.
700    1_
$a Guidi, Patrizia $u Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
700    1_
$a Kočan, Anton $u Research Center for Toxic Compounds in the Environment (Recetox), Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Marcomini, Antonio $u Dipartimento di Scienze Ambientali, Informatica e Statistica, Università "Ca' Foscari" di Venezia, Venezia, Italy.
700    1_
$a Mariottini, Michela $u Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy.
700    1_
$a Nigro, Marco $u Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
700    1_
$a Pozo-Gallardo, Karla $u Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy; Research Center for Toxic Compounds in the Environment (Recetox), Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Rocco, Lucia $u Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Seconda Università di Napoli, Via Vivaldi 43, Caserta, Italy.
700    1_
$a Scarcelli, Vittoria $u Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
700    1_
$a Smerilli, Arianna $u Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy.
700    1_
$a Corsi, Ilaria $u Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy.
773    0_
$w MED00008569 $t Aquatic toxicology (Amsterdam, Netherlands) $x 1879-1514 $g Roč. 153, č. - (2014), s. 53-65
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24342350 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141006 $b ABA008
991    __
$a 20141007104556 $b ABA008
999    __
$a ok $b bmc $g 1042287 $s 873316
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 153 $c - $d 53-65 $i 1879-1514 $m Aquatic toxicology $n Aquat Toxicol $x MED00008569
LZP    __
$a Pubmed-20141006

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...