-
Je něco špatně v tomto záznamu ?
Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin
J. Alster, T. Polívka, JB. Arellano, P. Hříbek, F. Vácha, J. Hála, J. Pšenčík,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- bakteriální proteiny chemie izolace a purifikace metabolismus MeSH
- bakteriochlorofyly chemie izolace a purifikace metabolismus MeSH
- Chlorobium chemie MeSH
- fotosyntéza MeSH
- přenos energie * MeSH
- spektrální analýza MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- xanthofyly chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14074805
- 003
- CZ-PrNML
- 005
- 20141009121306.0
- 007
- ta
- 008
- 141006s2012 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11120-011-9670-0 $2 doi
- 035 __
- $a (PubMed)21833799
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Alster, J $u Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Praha, Czech Republic. $7 gn_A_00004871
- 245 10
- $a Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin / $c J. Alster, T. Polívka, JB. Arellano, P. Hříbek, F. Vácha, J. Hála, J. Pšenčík,
- 520 9_
- $a Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.
- 650 _2
- $a bakteriální proteiny $x chemie $x izolace a purifikace $x metabolismus $7 D001426
- 650 _2
- $a bakteriochlorofyly $x chemie $x izolace a purifikace $x metabolismus $7 D001429
- 650 _2
- $a Chlorobium $x chemie $7 D041883
- 650 12
- $a přenos energie $7 D004735
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a světlosběrné proteinové komplexy $x chemie $x metabolismus $7 D045342
- 650 _2
- $a fotosyntéza $7 D010788
- 650 _2
- $a spektrální analýza $7 D013057
- 650 _2
- $a xanthofyly $x chemie $7 D024341
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Polívka, T
- 700 1_
- $a Arellano, J B $7 gn_A_00008205
- 700 1_
- $a Hříbek, P
- 700 1_
- $a Vácha, F
- 700 1_
- $a Hála, J
- 700 1_
- $a Pšenčík, J
- 773 0_
- $w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 111, č. 1-2 (2012), s. 193-204
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21833799 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20141006 $b ABA008
- 991 __
- $a 20141009121654 $b ABA008
- 999 __
- $a ok $b bmc $g 1042688 $s 873717
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 111 $c 1-2 $d 193-204 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
- LZP __
- $a Pubmed-20141006