• Je něco špatně v tomto záznamu ?

Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin

J. Alster, T. Polívka, JB. Arellano, P. Hříbek, F. Vácha, J. Hála, J. Pšenčík,

. 2012 ; 111 (1-2) : 193-204.

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc14074805
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14074805
003      
CZ-PrNML
005      
20141009121306.0
007      
ta
008      
141006s2012 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s11120-011-9670-0 $2 doi
035    __
$a (PubMed)21833799
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Alster, J $u Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Praha, Czech Republic. $7 gn_A_00004871
245    10
$a Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin / $c J. Alster, T. Polívka, JB. Arellano, P. Hříbek, F. Vácha, J. Hála, J. Pšenčík,
520    9_
$a Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.
650    _2
$a bakteriální proteiny $x chemie $x izolace a purifikace $x metabolismus $7 D001426
650    _2
$a bakteriochlorofyly $x chemie $x izolace a purifikace $x metabolismus $7 D001429
650    _2
$a Chlorobium $x chemie $7 D041883
650    12
$a přenos energie $7 D004735
650    _2
$a světlo $7 D008027
650    _2
$a světlosběrné proteinové komplexy $x chemie $x metabolismus $7 D045342
650    _2
$a fotosyntéza $7 D010788
650    _2
$a spektrální analýza $7 D013057
650    _2
$a xanthofyly $x chemie $7 D024341
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Polívka, T
700    1_
$a Arellano, J B $7 gn_A_00008205
700    1_
$a Hříbek, P
700    1_
$a Vácha, F
700    1_
$a Hála, J
700    1_
$a Pšenčík, J
773    0_
$w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 111, č. 1-2 (2012), s. 193-204
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21833799 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141006 $b ABA008
991    __
$a 20141009121654 $b ABA008
999    __
$a ok $b bmc $g 1042688 $s 873717
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 111 $c 1-2 $d 193-204 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
LZP    __
$a Pubmed-20141006

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace