-
Je něco špatně v tomto záznamu ?
Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway
J Agner, J Falck, J Lukas, J Bartek
Jazyk angličtina Země Spojené státy americké
PubMed
15561098
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů účinky léků MeSH
- buněčný cyklus MeSH
- checkpoint kinasa 2 MeSH
- cisplatina farmakologie MeSH
- cyklin E metabolismus MeSH
- DNA metabolismus MeSH
- doxorubicin farmakologie MeSH
- etoposid farmakologie MeSH
- fosfatasy cdc25 * metabolismus MeSH
- fytogenní protinádorové látky farmakologie MeSH
- inhibitory topoisomerasy I * MeSH
- inhibitory topoisomerasy II * MeSH
- ionizující záření MeSH
- kamptothecin farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- monoklonální protilátky metabolismus MeSH
- nádorové buněčné linie MeSH
- osteosarkom MeSH
- paclitaxel farmakologie MeSH
- poškození DNA účinky léků účinky záření MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteinkinasy metabolismus MeSH
- protinádorová antibiotika farmakologie MeSH
- průtoková cytometrie MeSH
- transformované buněčné linie MeSH
- ultrafialové záření MeSH
- Check Tag
- lidé MeSH
When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression.
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14077095
- 003
- CZ-PrNML
- 005
- 20141028100205.0
- 007
- ta
- 008
- 141028s2005 xxu f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)15561098
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Agner, J. $u Danish Cancer Society, Institute of Cancer Biology, DK-2100 Copenhagen, Denmark. $7 gn_A_00002200
- 245 10
- $a Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway / $c J Agner, J Falck, J Lukas, J Bartek
- 520 9_
- $a When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression.
- 590 __
- $a bohemika - dle Pubmed
- 650 02
- $a protinádorová antibiotika $x farmakologie $7 D000903
- 650 02
- $a monoklonální protilátky $x metabolismus $7 D000911
- 650 02
- $a fytogenní protinádorové látky $x farmakologie $7 D000972
- 650 02
- $a kamptothecin $x farmakologie $7 D002166
- 650 02
- $a buněčný cyklus $7 D002453
- 650 02
- $a transformované buněčné linie $7 D002461
- 650 02
- $a nádorové buněčné linie $7 D045744
- 650 02
- $a checkpoint kinasa 2 $7 D064447
- 650 02
- $a cisplatina $x farmakologie $7 D002945
- 650 02
- $a cyklin E $x metabolismus $7 D019927
- 650 02
- $a DNA $x metabolismus $7 D004247
- 650 02
- $a poškození DNA $x účinky léků $7 D004249
- 650 02
- $a poškození DNA $x účinky záření $7 D004249
- 650 02
- $a doxorubicin $x farmakologie $7 D004317
- 650 02
- $a aktivace enzymů $x účinky léků $7 D004789
- 650 02
- $a etoposid $x farmakologie $7 D005047
- 650 02
- $a průtoková cytometrie $7 D005434
- 650 02
- $a lidé $7 D006801
- 650 02
- $a kinetika $7 D007700
- 650 02
- $a osteosarkom $7 D012516
- 650 02
- $a paclitaxel $x farmakologie $7 D017239
- 650 02
- $a proteinkinasy $x metabolismus $7 D011494
- 650 02
- $a protein-serin-threoninkinasy $x metabolismus $7 D017346
- 650 02
- $a ionizující záření $7 D011839
- 650 12
- $a inhibitory topoisomerasy I $7 D059004
- 650 12
- $a inhibitory topoisomerasy II $7 D059005
- 650 02
- $a ultrafialové záření $7 D014466
- 650 12
- $a fosfatasy cdc25 $x metabolismus $7 D020687
- 700 1_
- $a Falck, J.
- 700 1_
- $a Lukáš, Jiří $7 xx0094305
- 700 1_
- $a Bártek, Jiří, $d 1953- $7 xx0046271
- 773 0_
- $t Experimental Cell Research $x 0014-4827 $g Roč. 302, č. 2 (2005), s. 162-169 $p Exp Cell Res $w MED00009712
- 773 0_
- $p Exp Cell Res $g 302(2):162-9, 2005 Jan 15 $x 0014-4827
- 910 __
- $a ABA008 $y 4 $z 0
- 990 __
- $a 20141028100213 $b ABA008
- 991 __
- $a 20141028100213 $b ABA008
- 999 __
- $a ok $b bmc $g 1045188 $s 876060
- BAS __
- $a 3
- BMC __
- $a 2005 $b 302 $c 2 $d 162-169 $x MED00009712 $i 0014-4827 $m Experimental cell research $n Exp Cell Res
- LZP __
- $a NLK 2014-1/lp