Positron Emission Tomography-Guided Bone Marrow-Sparing Radiation Therapy for Locoregionally Advanced Cervix Cancer: Final Results From the INTERTECC Phase II/III Trial
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu klinické zkoušky, fáze II, klinické zkoušky, fáze III, časopisecké články, randomizované kontrolované studie, Research Support, N.I.H., Extramural
Grantová podpora
R01 CA197059
NCI NIH HHS - United States
R21 CA162718
NCI NIH HHS - United States
PubMed
34419564
PubMed Central
PMC8688221
DOI
10.1016/j.ijrobp.2021.08.019
PII: S0360-3016(21)02707-3
Knihovny.cz E-zdroje
- MeSH
- cisplatina terapeutické užití MeSH
- kostní dřeň účinky záření MeSH
- lidé MeSH
- nádory děložního čípku * diagnostické zobrazování farmakoterapie patologie radioterapie MeSH
- pozitronová emisní tomografie MeSH
- radioterapie řízená obrazem MeSH
- radioterapie s modulovanou intenzitou * škodlivé účinky metody MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze II MeSH
- klinické zkoušky, fáze III MeSH
- randomizované kontrolované studie MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cisplatina MeSH
PURPOSE: To test effects of positron emission tomography (PET)-based bone marrow-sparing (BMS) image-guided intensity modulated radiation therapy (IG-IMRT) on efficacy and toxicity for patients with locoregionally advanced cervical cancer. METHODS AND MATERIALS: In an international phase II/III trial, patients with stage IB-IVA cervical carcinoma were treated with either PET-based BMS-IG-IMRT (PET-BMS-IMRT group) or standard image-guided IMRT (IMRT group), with concurrent cisplatin (40 mg/m2 weekly), followed by brachytherapy. The phase II component nonrandomly assigned patients to PET-BMS-IMRT or standard IMRT. The phase III trial randomized patients to PET-BMS-IMRT versus IMRT, with a primary endpoint of progression-free survival (PFS) but was closed early for futility. Phase III patients were analyzed separately and in combination with phase II patients, comparing acute hematologic toxicity, cisplatin delivery, PFS, overall survival (OS), and patterns of failure. In a post-hoc exploratory analysis, we investigated the association between pretreatment absolute lymphocyte count (ALC) and OS. RESULTS: In total, 101 patients were enrolled on the phase II/III trial, including 29 enrolled in phase III (PET-BMS-IMRT group: 16; IMRT group: 13) before early closure. Median follow-up was 33 months for phase III patients and 39 months for all patients. PFS and OS at 5 years for all patients were 73.6% (95% confidence interval [CI], 64.9%-84.3%) and 84% (95% CI, 76%-92.9%]), respectively. There were no differences in number of cisplatin cycles, OS, PFS, or patterns of failure between groups for the combined cohort. The incidence of acute grade ≥ 3 neutropenia was significantly lower in the PET-BMS-IMRT group compared with IMRT for randomized patients (19% vs 54%, χ2P = .048) and in the combined cohort (13% vs 35%, χ2P = .01). Patients with pretreatment ALC ≤ 1.5 k/µL had nonsignificantly worse OS on multivariable analysis (HR 2.85; 95% CI, 0.94-8.62; adjusted P = .216), compared with patients with ALC > 1.5 k/µL. There was no difference in posttreatment ALC by treatment group. CONCLUSIONS: PET-BMS-IMRT significantly reduced acute grade ≥3 neutropenia, but not treatment-related lymphopenia, compared with standard IMRT. We found no evidence that PET-BMS-IMRT affected chemotherapy delivery or long-term outcomes, and weak evidence of an association between pretreatment ALC and OS.
Department of Oncology and Radiotherapy University Hospital Hradec Kralove Czech Republic
Department of Radiation Oncology Washington University in St Louis St Louis Missouri
Marie Sklodowska Cancer Center and Institute of Oncology Gliwice Poland
Tata Memorial Centre Parel Mumbai India
University of California Irvine Irvine California
University of California San Diego La Jolla California
University of Miami Miami Florida
Zobrazit více v PubMed
Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Heal. 2020. doi:10.1016/S2214-109X(19)30482-6 PubMed DOI PMC
Buskwofie A, David-West G, Clare CA. A Review of Cervical Cancer: Incidence and Disparities. J Natl Med Assoc. 2020. doi:10.1016/j.jnma.2020.03.002 PubMed DOI
Eifel PJ, Winter K, Morris M, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: An update of Radiation Therapy Oncology Group Trial (RTOG) 90–01. J Clin Oncol. 2004. doi:10.1200/JCO.2004.07.197 PubMed DOI
Rose PG, Bundy BN, Watkins EB, et al. Concurrent Cisplatin-Based Radiotherapy and Chemotherapy for Locally Advanced Cervical Cancer. N Engl J Med. 1999. doi:10.1056/nejm199904153401502 PubMed DOI
Green JA, Kirwan JJ, Tierney J, et al. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst Rev. 2005. doi:10.1002/14651858.CD002225.pub2 PubMed DOI PMC
Dueñas-González A, Zarbá JJ, Patel F, et al. Phase III, open-label, randomized study comparing concurrent gemcitabine plus cisplatin and radiation followed by adjuvant gemcitabine and cisplatin versus concurrent cisplatin and radiation in patients with stage IIB to IVA carcinoma of the cervix. J Clin Oncol. 2011. doi:10.1200/JCO.2009.25.9663 PubMed DOI
Mell LK, Xu R, Yashar CM, et al. Phase 1 Trial of Concurrent Gemcitabine and Cisplatin with Image Guided Intensity Modulated Radiation Therapy for Locoregionally Advanced Cervical Carcinoma. Int J Radiat Oncol Biol Phys. 2020;107(5):964–973. doi:10.1016/j.ijrobp.2020.04.019 PubMed DOI PMC
Yusufaly T, Miller A, Medina-Palomo A, et al. A Multi-atlas Approach for Active Bone Marrow Sparing Radiation Therapy: Implementation in the NRG-GY006 Trial. Int J Radiat Oncol Biol Phys. 2020;108(5):1240–1247. doi:10.1016/j.ijrobp.2020.06.071 PubMed DOI PMC
Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002. doi:10.1016/S0360-3016(01)02785-7 PubMed DOI
Chen MF, Tseng CJ, Tseng CC, Yu CY, Wu C Te, Chen WC. Adjuvant concurrent chemoradiotherapy with intensity-modulated pelvic radiotherapy after surgery for high-risk, early stage cervical cancer patients. Cancer J. 2008. doi:10.1097/PPO.0b013e318173a04b PubMed DOI
Mundt AJ, Mell LK, Roeske JC. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int J Radiat Oncol Biol Phys. 2003. doi:10.1016/S0360-3016(03)00325-0 PubMed DOI
Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002. doi:10.1016/S0360-3016(01)02785-7 PubMed DOI
Brixey CJ, Roeske JC, Lujan AE, Yamada SD, Rotmensch J, Mundt AJ. Impact of intensity-modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002. doi:10.1016/S0360-3016(02)03801-4 PubMed DOI
Gandhi AK, Sharma DN, Rath GK, et al. Long Term Clinical Outcome and Late Toxicity of Intensity Modulated Versus Conventional Pelvic Radiation Therapy for Locally Advanced Cervix Carcinoma. J Clin DIAGNOSTIC Res. 2019. doi:10.7860/jcdr/2019/40260.12741 PubMed DOI
Klopp AH, Yeung AR, Deshmukh S, et al. Patient-reported toxicity during pelvic intensity-modulated radiation therapy: NRG oncology-RTOG 1203. J Clin Oncol. 2018. doi:10.1200/JCO.2017.77.4273 PubMed DOI PMC
Chopra S, Dora T, Gupta S, et al. Phase III Randomized Trial of Postoperative Adjuvant Conventional Radiation (3DCRT) versus Image Guided Intensity Modulated Radiotherapy (IG-IMRT) in Cervical Cancer (PARCER): Final Analysis. Int J Radiat Oncol. 2020. doi:10.1016/j.ijrobp.2020.07.2069 DOI
Lin Y, Chen K, Lu Z, et al. Intensity-modulated radiation therapy for definitive treatment of cervical cancer: A meta-analysis. Radiat Oncol. 2018. doi:10.1186/s13014-018-1126-7 PubMed DOI PMC
A Trial Comparing Intensity Modulated Radiation Therapy (IMRT) With Conventional Radiation Therapy in Stage IIB Carcinoma Cervix - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00193804. Accessed March 26, 2021.
Rose BS, Liang Y, Lau SK, et al. Correlation between radiation dose to 18F-FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2012. doi:10.1016/j.ijrobp.2011.09.048 PubMed DOI
A Trial Comparing Intensity Modulated Radiation Therapy (IMRT) With Conventional Radiation Therapy in Stage IIB Carcinoma Cervix
Full Text View - ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT00193804. Accessed March 26, 2021.
Huang J, Gu F, Ji T, Zhao J, Li G. Pelvic bone marrow sparing intensity modulated radiotherapy reduces the incidence of the hematologic toxicity of patients with cervical cancer receiving concurrent chemoradiotherapy: a single-center prospective randomized controlled trial. Radiat Oncol. 2020. doi:10.1186/s13014-020-01606-3 PubMed DOI PMC
Newman NB, Anderson JL, Sherry AD, Osmundson EC. Dosimetric analysis of lymphopenia during chemoradiotherapy for esophageal cancer. J Thorac Dis. 2020. doi:10.21037/jtd.2020.03.93 PubMed DOI PMC
Kuncman Ł, Stawiski K, Masłowski M, Kucharz J, Fijuth J. Dose–volume parameters of MRI-based active bone marrow predict hematologic toxicity of chemoradiotherapy for rectal cancer. Strahlentherapie und Onkol. 2020. doi:10.1007/s00066-020-01659-z PubMed DOI PMC
Sini C, Fiorino C, Perna L, et al. Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation. Radiother Oncol. 2016. doi:10.1016/j.radonc.2015.11.020 PubMed DOI
Choi CH, Kang H, Kim WY, et al. Prognostic Value of Baseline Lymphocyte Count in Cervical Carcinoma Treated With Concurrent Chemoradiation. Int J Radiat Oncol Biol Phys. 2008. doi:10.1016/j.ijrobp.2007.09.024 PubMed DOI
Hoskin PJ, Rojas AM, Peiris SN, Mullassery V, Chong IY. Pre-treatment Haemoglobin and Peripheral Blood Lymphocyte Count as Independent Predictors of Outcome in Carcinoma of Cervix. Clin Oncol. 2014. doi:10.1016/j.clon.2013.11.023 PubMed DOI
Wu ES, Oduyebo T, Cobb LP, et al. Lymphopenia and its association with survival in patients with locally advanced cervical cancer. Gynecol Oncol. 2016. doi:10.1016/j.ygyno.2015.11.013 PubMed DOI PMC
Gooden MJM, De Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br J Cancer. 2011. doi:10.1038/bjc.2011.189 PubMed DOI PMC
Kidd EA, Siegel BA, Dehdashti F, et al. Clinical Outcomes of Definitive Intensity-Modulated Radiation Therapy With Fluorodeoxyglucose-Positron Emission Tomography Simulation in Patients With Locally Advanced Cervical Cancer. Int J Radiat Oncol Biol Phys. 2010. doi:10.1016/j.ijrobp.2009.06.041 PubMed DOI
Liang Y, Bydder M, Yashar CM, et al. Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies. Int J Radiat Oncol Biol Phys. 2013. doi:10.1016/j.ijrobp.2012.04.044 PubMed DOI
Dumville JC, Hahn S, Miles JNV, Torgerson DJ. The use of unequal randomisation ratios in clinical trials: A review. Contemp Clin Trials. 2006. doi:10.1016/j.cct.2005.08.003 PubMed DOI
Davies RB. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika. 1987. March 1;74(1):33–43. PubMed
Rose BS, Aydogan B, Liang Y, et al. Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2011. doi:10.1016/j.ijrobp.2009.11.010 PubMed DOI PMC
Arcadipane F, Silvetti P, Olivero F, et al. Bone Marrow-Sparing IMRT in Anal Cancer Patients Undergoing Concurrent Chemo-Radiation: Results of the First Phase of a Prospective Phase II Trial. Cancers (Basel). 2020. November 9;12(11):3306. doi: 10.3390/cancers12113306. PubMed DOI PMC
So TH, Chan SK, Chan WL, et al. Lymphopenia and Radiation Dose to Circulating Lymphocytes With Neoadjuvant Chemoradiation in Esophageal Squamous Cell Carcinoma. Adv Radiat Oncol. 2020. doi:10.1016/j.adro.2020.03.021 PubMed DOI PMC
Abravan A, Faivre-Finn C, Kennedy J, McWilliam A, van Herk M. Radiotherapy-Related Lymphopenia Affects Overall Survival in Patients With Lung Cancer. J Thorac Oncol. 2020. doi:10.1016/j.jtho.2020.06.008 PubMed DOI
Cho O, Chun M, Chang SJ, Oh YT, Noh K. Prognostic value of severe lymphopenia during pelvic concurrent chemoradiotherapy in cervical cancer. Anticancer Res. 2016. PubMed
Lee BM, Byun HK, Seong J. Significance of lymphocyte recovery from treatment-related lymphopenia in locally advanced pancreatic cancer. Radiother Oncol. 2020. doi:10.1016/j.radonc.2020.07.026 PubMed DOI
Wild AT, Herman JM, Dholakia AS, et al. Lymphocyte-Sparing Effect of Stereotactic Body Radiation Therapy in Patients with Unresectable Pancreatic Cancer. Int J Radiat Oncol Biol Phys. 2016. doi:10.1016/j.ijrobp.2015.11.026 PubMed DOI PMC
Jin JY, Hu C, Xiao Y, et al. Higher Radiation Dose to Immune System is Correlated With Poorer Survival in Patients With Stage III Non–small Cell Lung Cancer: A Secondary Study of a Phase 3 Cooperative Group Trial (NRG Oncology RTOG 0617). Int J Radiat Oncol. 2017. doi:10.1016/j.ijrobp.2017.06.351 DOI
Ladbury CJ, Rusthoven CG, Camidge DR, Kavanagh BD, Nath SK. Impact of Radiation Dose to the Host Immune System on Tumor Control and Survival for Stage III Non-Small Cell Lung Cancer Treated with Definitive Radiation Therapy. Int J Radiat Oncol Biol Phys. 2019. doi:10.1016/j.ijrobp.2019.05.064 PubMed DOI
Tang C, Liao Z, Gomez D, et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. Int J Radiat Oncol Biol Phys. 2014. doi:10.1016/j.ijrobp.2014.04.025 PubMed DOI
Campian JL, Sarai G, Ye X, Marur S, Grossman SA. Association between severe treatment-related lymphopenia and progression-free survival in patients with newly diagnosed squamous cell head and neck cancer. Head Neck. 2014. doi:10.1002/hed.23535 PubMed DOI PMC
Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: Modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 2013. doi:10.3109/07357907.2012.762780 PubMed DOI PMC
Venkatesulu BP, Mallick S, Lin SH, Krishnan S. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit Rev Oncol Hematol. 2018. doi:10.1016/j.critrevonc.2018.01.003 PubMed DOI
Lambin P, Lieverse RIY, Eckert F, et al. Lymphocyte-Sparing Radiotherapy: The Rationale for Protecting Lymphocyte-rich Organs When Combining Radiotherapy With Immunotherapy. Semin Radiat Oncol. 2020. doi:10.1016/j.semradonc.2019.12.003 PubMed DOI PMC
Ellsworth SG. Field size effects on the risk and severity of treatment-induced lymphopenia in patients undergoing radiation therapy for solid tumors. Adv Radiat Oncol. 2018. doi:10.1016/j.adro.2018.08.014 PubMed DOI PMC
Torres MA, Jhingran A, Thames HD, et al. Comparison of Treatment Tolerance and Outcomes in Patients With Cervical Cancer Treated With Concurrent Chemoradiotherapy in a Prospective Randomized Trial or With Standard Treatment. Int J Radiat Oncol Biol Phys. 2008. doi:10.1016/j.ijrobp.2007.05.028 PubMed DOI
Li N, Noticewala SS, Williamson CW, et al. Feasibility of atlas-based active bone marrow sparing intensity modulated radiation therapy for cervical cancer. Radiother Oncol. 2017. doi:10.1016/j.radonc.2017.02.017 PubMed DOI
Vitzthum LK, Park H, Zakeri K, et al. Risk of Pelvic Fracture With Radiation Therapy in Older Patients. Int J Radiat Oncol. 2020;106(3):485–492. doi:10.1016/j.ijrobp.2019.10.006 PubMed DOI PMC