Positron Emission Tomography-Guided Bone Marrow-Sparing Radiation Therapy for Locoregionally Advanced Cervix Cancer: Final Results From the INTERTECC Phase II/III Trial

. 2022 Jan 01 ; 112 (1) : 169-178. [epub] 20210820

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu klinické zkoušky, fáze II, klinické zkoušky, fáze III, časopisecké články, randomizované kontrolované studie, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid34419564

Grantová podpora
R01 CA197059 NCI NIH HHS - United States
R21 CA162718 NCI NIH HHS - United States

Odkazy

PubMed 34419564
PubMed Central PMC8688221
DOI 10.1016/j.ijrobp.2021.08.019
PII: S0360-3016(21)02707-3
Knihovny.cz E-zdroje

PURPOSE: To test effects of positron emission tomography (PET)-based bone marrow-sparing (BMS) image-guided intensity modulated radiation therapy (IG-IMRT) on efficacy and toxicity for patients with locoregionally advanced cervical cancer. METHODS AND MATERIALS: In an international phase II/III trial, patients with stage IB-IVA cervical carcinoma were treated with either PET-based BMS-IG-IMRT (PET-BMS-IMRT group) or standard image-guided IMRT (IMRT group), with concurrent cisplatin (40 mg/m2 weekly), followed by brachytherapy. The phase II component nonrandomly assigned patients to PET-BMS-IMRT or standard IMRT. The phase III trial randomized patients to PET-BMS-IMRT versus IMRT, with a primary endpoint of progression-free survival (PFS) but was closed early for futility. Phase III patients were analyzed separately and in combination with phase II patients, comparing acute hematologic toxicity, cisplatin delivery, PFS, overall survival (OS), and patterns of failure. In a post-hoc exploratory analysis, we investigated the association between pretreatment absolute lymphocyte count (ALC) and OS. RESULTS: In total, 101 patients were enrolled on the phase II/III trial, including 29 enrolled in phase III (PET-BMS-IMRT group: 16; IMRT group: 13) before early closure. Median follow-up was 33 months for phase III patients and 39 months for all patients. PFS and OS at 5 years for all patients were 73.6% (95% confidence interval [CI], 64.9%-84.3%) and 84% (95% CI, 76%-92.9%]), respectively. There were no differences in number of cisplatin cycles, OS, PFS, or patterns of failure between groups for the combined cohort. The incidence of acute grade ≥ 3 neutropenia was significantly lower in the PET-BMS-IMRT group compared with IMRT for randomized patients (19% vs 54%, χ2P = .048) and in the combined cohort (13% vs 35%, χ2P = .01). Patients with pretreatment ALC ≤ 1.5 k/µL had nonsignificantly worse OS on multivariable analysis (HR 2.85; 95% CI, 0.94-8.62; adjusted P = .216), compared with patients with ALC > 1.5 k/µL. There was no difference in posttreatment ALC by treatment group. CONCLUSIONS: PET-BMS-IMRT significantly reduced acute grade ≥3 neutropenia, but not treatment-related lymphopenia, compared with standard IMRT. We found no evidence that PET-BMS-IMRT affected chemotherapy delivery or long-term outcomes, and weak evidence of an association between pretreatment ALC and OS.

Zobrazit více v PubMed

Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Heal. 2020. doi:10.1016/S2214-109X(19)30482-6 PubMed DOI PMC

Buskwofie A, David-West G, Clare CA. A Review of Cervical Cancer: Incidence and Disparities. J Natl Med Assoc. 2020. doi:10.1016/j.jnma.2020.03.002 PubMed DOI

Eifel PJ, Winter K, Morris M, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: An update of Radiation Therapy Oncology Group Trial (RTOG) 90–01. J Clin Oncol. 2004. doi:10.1200/JCO.2004.07.197 PubMed DOI

Rose PG, Bundy BN, Watkins EB, et al. Concurrent Cisplatin-Based Radiotherapy and Chemotherapy for Locally Advanced Cervical Cancer. N Engl J Med. 1999. doi:10.1056/nejm199904153401502 PubMed DOI

Green JA, Kirwan JJ, Tierney J, et al. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst Rev. 2005. doi:10.1002/14651858.CD002225.pub2 PubMed DOI PMC

Dueñas-González A, Zarbá JJ, Patel F, et al. Phase III, open-label, randomized study comparing concurrent gemcitabine plus cisplatin and radiation followed by adjuvant gemcitabine and cisplatin versus concurrent cisplatin and radiation in patients with stage IIB to IVA carcinoma of the cervix. J Clin Oncol. 2011. doi:10.1200/JCO.2009.25.9663 PubMed DOI

Mell LK, Xu R, Yashar CM, et al. Phase 1 Trial of Concurrent Gemcitabine and Cisplatin with Image Guided Intensity Modulated Radiation Therapy for Locoregionally Advanced Cervical Carcinoma. Int J Radiat Oncol Biol Phys. 2020;107(5):964–973. doi:10.1016/j.ijrobp.2020.04.019 PubMed DOI PMC

Yusufaly T, Miller A, Medina-Palomo A, et al. A Multi-atlas Approach for Active Bone Marrow Sparing Radiation Therapy: Implementation in the NRG-GY006 Trial. Int J Radiat Oncol Biol Phys. 2020;108(5):1240–1247. doi:10.1016/j.ijrobp.2020.06.071 PubMed DOI PMC

Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002. doi:10.1016/S0360-3016(01)02785-7 PubMed DOI

Chen MF, Tseng CJ, Tseng CC, Yu CY, Wu C Te, Chen WC. Adjuvant concurrent chemoradiotherapy with intensity-modulated pelvic radiotherapy after surgery for high-risk, early stage cervical cancer patients. Cancer J. 2008. doi:10.1097/PPO.0b013e318173a04b PubMed DOI

Mundt AJ, Mell LK, Roeske JC. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int J Radiat Oncol Biol Phys. 2003. doi:10.1016/S0360-3016(03)00325-0 PubMed DOI

Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002. doi:10.1016/S0360-3016(01)02785-7 PubMed DOI

Brixey CJ, Roeske JC, Lujan AE, Yamada SD, Rotmensch J, Mundt AJ. Impact of intensity-modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002. doi:10.1016/S0360-3016(02)03801-4 PubMed DOI

Gandhi AK, Sharma DN, Rath GK, et al. Long Term Clinical Outcome and Late Toxicity of Intensity Modulated Versus Conventional Pelvic Radiation Therapy for Locally Advanced Cervix Carcinoma. J Clin DIAGNOSTIC Res. 2019. doi:10.7860/jcdr/2019/40260.12741 PubMed DOI

Klopp AH, Yeung AR, Deshmukh S, et al. Patient-reported toxicity during pelvic intensity-modulated radiation therapy: NRG oncology-RTOG 1203. J Clin Oncol. 2018. doi:10.1200/JCO.2017.77.4273 PubMed DOI PMC

Chopra S, Dora T, Gupta S, et al. Phase III Randomized Trial of Postoperative Adjuvant Conventional Radiation (3DCRT) versus Image Guided Intensity Modulated Radiotherapy (IG-IMRT) in Cervical Cancer (PARCER): Final Analysis. Int J Radiat Oncol. 2020. doi:10.1016/j.ijrobp.2020.07.2069 DOI

Lin Y, Chen K, Lu Z, et al. Intensity-modulated radiation therapy for definitive treatment of cervical cancer: A meta-analysis. Radiat Oncol. 2018. doi:10.1186/s13014-018-1126-7 PubMed DOI PMC

A Trial Comparing Intensity Modulated Radiation Therapy (IMRT) With Conventional Radiation Therapy in Stage IIB Carcinoma Cervix - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00193804. Accessed March 26, 2021.

Rose BS, Liang Y, Lau SK, et al. Correlation between radiation dose to 18F-FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2012. doi:10.1016/j.ijrobp.2011.09.048 PubMed DOI

A Trial Comparing Intensity Modulated Radiation Therapy (IMRT) With Conventional Radiation Therapy in Stage IIB Carcinoma Cervix

Full Text View - ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT00193804. Accessed March 26, 2021.

Huang J, Gu F, Ji T, Zhao J, Li G. Pelvic bone marrow sparing intensity modulated radiotherapy reduces the incidence of the hematologic toxicity of patients with cervical cancer receiving concurrent chemoradiotherapy: a single-center prospective randomized controlled trial. Radiat Oncol. 2020. doi:10.1186/s13014-020-01606-3 PubMed DOI PMC

Newman NB, Anderson JL, Sherry AD, Osmundson EC. Dosimetric analysis of lymphopenia during chemoradiotherapy for esophageal cancer. J Thorac Dis. 2020. doi:10.21037/jtd.2020.03.93 PubMed DOI PMC

Kuncman Ł, Stawiski K, Masłowski M, Kucharz J, Fijuth J. Dose–volume parameters of MRI-based active bone marrow predict hematologic toxicity of chemoradiotherapy for rectal cancer. Strahlentherapie und Onkol. 2020. doi:10.1007/s00066-020-01659-z PubMed DOI PMC

Sini C, Fiorino C, Perna L, et al. Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation. Radiother Oncol. 2016. doi:10.1016/j.radonc.2015.11.020 PubMed DOI

Choi CH, Kang H, Kim WY, et al. Prognostic Value of Baseline Lymphocyte Count in Cervical Carcinoma Treated With Concurrent Chemoradiation. Int J Radiat Oncol Biol Phys. 2008. doi:10.1016/j.ijrobp.2007.09.024 PubMed DOI

Hoskin PJ, Rojas AM, Peiris SN, Mullassery V, Chong IY. Pre-treatment Haemoglobin and Peripheral Blood Lymphocyte Count as Independent Predictors of Outcome in Carcinoma of Cervix. Clin Oncol. 2014. doi:10.1016/j.clon.2013.11.023 PubMed DOI

Wu ES, Oduyebo T, Cobb LP, et al. Lymphopenia and its association with survival in patients with locally advanced cervical cancer. Gynecol Oncol. 2016. doi:10.1016/j.ygyno.2015.11.013 PubMed DOI PMC

Gooden MJM, De Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br J Cancer. 2011. doi:10.1038/bjc.2011.189 PubMed DOI PMC

Kidd EA, Siegel BA, Dehdashti F, et al. Clinical Outcomes of Definitive Intensity-Modulated Radiation Therapy With Fluorodeoxyglucose-Positron Emission Tomography Simulation in Patients With Locally Advanced Cervical Cancer. Int J Radiat Oncol Biol Phys. 2010. doi:10.1016/j.ijrobp.2009.06.041 PubMed DOI

Liang Y, Bydder M, Yashar CM, et al. Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies. Int J Radiat Oncol Biol Phys. 2013. doi:10.1016/j.ijrobp.2012.04.044 PubMed DOI

Dumville JC, Hahn S, Miles JNV, Torgerson DJ. The use of unequal randomisation ratios in clinical trials: A review. Contemp Clin Trials. 2006. doi:10.1016/j.cct.2005.08.003 PubMed DOI

Davies RB. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika. 1987. March 1;74(1):33–43. PubMed

Rose BS, Aydogan B, Liang Y, et al. Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2011. doi:10.1016/j.ijrobp.2009.11.010 PubMed DOI PMC

Arcadipane F, Silvetti P, Olivero F, et al. Bone Marrow-Sparing IMRT in Anal Cancer Patients Undergoing Concurrent Chemo-Radiation: Results of the First Phase of a Prospective Phase II Trial. Cancers (Basel). 2020. November 9;12(11):3306. doi: 10.3390/cancers12113306. PubMed DOI PMC

So TH, Chan SK, Chan WL, et al. Lymphopenia and Radiation Dose to Circulating Lymphocytes With Neoadjuvant Chemoradiation in Esophageal Squamous Cell Carcinoma. Adv Radiat Oncol. 2020. doi:10.1016/j.adro.2020.03.021 PubMed DOI PMC

Abravan A, Faivre-Finn C, Kennedy J, McWilliam A, van Herk M. Radiotherapy-Related Lymphopenia Affects Overall Survival in Patients With Lung Cancer. J Thorac Oncol. 2020. doi:10.1016/j.jtho.2020.06.008 PubMed DOI

Cho O, Chun M, Chang SJ, Oh YT, Noh K. Prognostic value of severe lymphopenia during pelvic concurrent chemoradiotherapy in cervical cancer. Anticancer Res. 2016. PubMed

Lee BM, Byun HK, Seong J. Significance of lymphocyte recovery from treatment-related lymphopenia in locally advanced pancreatic cancer. Radiother Oncol. 2020. doi:10.1016/j.radonc.2020.07.026 PubMed DOI

Wild AT, Herman JM, Dholakia AS, et al. Lymphocyte-Sparing Effect of Stereotactic Body Radiation Therapy in Patients with Unresectable Pancreatic Cancer. Int J Radiat Oncol Biol Phys. 2016. doi:10.1016/j.ijrobp.2015.11.026 PubMed DOI PMC

Jin JY, Hu C, Xiao Y, et al. Higher Radiation Dose to Immune System is Correlated With Poorer Survival in Patients With Stage III Non–small Cell Lung Cancer: A Secondary Study of a Phase 3 Cooperative Group Trial (NRG Oncology RTOG 0617). Int J Radiat Oncol. 2017. doi:10.1016/j.ijrobp.2017.06.351 DOI

Ladbury CJ, Rusthoven CG, Camidge DR, Kavanagh BD, Nath SK. Impact of Radiation Dose to the Host Immune System on Tumor Control and Survival for Stage III Non-Small Cell Lung Cancer Treated with Definitive Radiation Therapy. Int J Radiat Oncol Biol Phys. 2019. doi:10.1016/j.ijrobp.2019.05.064 PubMed DOI

Tang C, Liao Z, Gomez D, et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. Int J Radiat Oncol Biol Phys. 2014. doi:10.1016/j.ijrobp.2014.04.025 PubMed DOI

Campian JL, Sarai G, Ye X, Marur S, Grossman SA. Association between severe treatment-related lymphopenia and progression-free survival in patients with newly diagnosed squamous cell head and neck cancer. Head Neck. 2014. doi:10.1002/hed.23535 PubMed DOI PMC

Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: Modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 2013. doi:10.3109/07357907.2012.762780 PubMed DOI PMC

Venkatesulu BP, Mallick S, Lin SH, Krishnan S. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit Rev Oncol Hematol. 2018. doi:10.1016/j.critrevonc.2018.01.003 PubMed DOI

Lambin P, Lieverse RIY, Eckert F, et al. Lymphocyte-Sparing Radiotherapy: The Rationale for Protecting Lymphocyte-rich Organs When Combining Radiotherapy With Immunotherapy. Semin Radiat Oncol. 2020. doi:10.1016/j.semradonc.2019.12.003 PubMed DOI PMC

Ellsworth SG. Field size effects on the risk and severity of treatment-induced lymphopenia in patients undergoing radiation therapy for solid tumors. Adv Radiat Oncol. 2018. doi:10.1016/j.adro.2018.08.014 PubMed DOI PMC

Torres MA, Jhingran A, Thames HD, et al. Comparison of Treatment Tolerance and Outcomes in Patients With Cervical Cancer Treated With Concurrent Chemoradiotherapy in a Prospective Randomized Trial or With Standard Treatment. Int J Radiat Oncol Biol Phys. 2008. doi:10.1016/j.ijrobp.2007.05.028 PubMed DOI

Li N, Noticewala SS, Williamson CW, et al. Feasibility of atlas-based active bone marrow sparing intensity modulated radiation therapy for cervical cancer. Radiother Oncol. 2017. doi:10.1016/j.radonc.2017.02.017 PubMed DOI

Vitzthum LK, Park H, Zakeri K, et al. Risk of Pelvic Fracture With Radiation Therapy in Older Patients. Int J Radiat Oncol. 2020;106(3):485–492. doi:10.1016/j.ijrobp.2019.10.006 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace