Clinical outcomes of pelvic bone marrow sparing radiotherapy for cervical cancer: A systematic review and meta-analysis of randomised controlled trials
Status PubMed-not-MEDLINE Jazyk angličtina Země Irsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38946805
PubMed Central
PMC11214291
DOI
10.1016/j.ctro.2024.100801
PII: S2405-6308(24)00078-8
Knihovny.cz E-zdroje
- Klíčová slova
- Bone marrow, Chemoradiotherapy, Cisplatin, Haematologic toxicity, Pelvic bones,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Concurrent chemoradiotherapy (CRT) is the standard treatment for locally advanced cervical cancer. We investigated how additional bone marrow sparing (BMS) affects the clinical outcomes. METHODS: We queried MEDLINE, Embase, Web of Science Core Collection, Google Scholar, Sinomed, CNKI, and Wanfang databases for articles published in English or Chinese between 2010/01/01 and 2023/10/31. Full-text manuscripts of prospective, randomised trials on BMS in cervical cancer patients treated with definitive or postoperative CRT were included. Risk of bias (RoB) was assessed using Cochrane Collaboration's RoB tool. Random-effects models were used for the meta-analysis. RESULTS: A total of 17 trials encompassing 1297 patients were included. The majority were single-centre trials (n = 1268) performed in China (n = 1128). Most trials used CT-based anatomical BMS (n = 1076). There was a comparable representation of trials in the definitive (n = 655) and postoperative (n = 582) settings, and the remaining trials included both.Twelve studies reported data on G ≥ 3 (n = 782) and G ≥ 2 (n = 754) haematologic adverse events. Both G ≥ 3 (OR 0.39; 95 % CI 0.28-0.55; p < 0.001) and G ≥ 2 (OR 0.29; 95 % CI 0.18-0.46; p < 0.001) toxicity were significantly lowered, favouring BMS. Seven studies (n = 635) reported data on chemotherapy interruptions, defined as receiving less than five cycles of cisplatin, which were significantly less frequent in patients treated with BMS (OR 0.44; 95 % CI 0.24-0.81; p = 0.016). There was no evidence of increased gastrointestinal or genitourinary toxicity.There were no signs of significant heterogeneity. Four studies were assessed as high RoB; sensitivity analyses excluding these provided comparable results for main outcomes. The main limitations include heterogeneity in BMS methodology between studies, low representation of populations most affected by cervical cancer, and insufficient data to assess survival outcomes. CONCLUSIONS: The addition of BMS to definitive CRT in cervical cancer patients decreases hematologic toxicity and the frequency of interruptions in concurrent chemotherapy. However, data are insufficient to verify the impact on survival and disease control.
Collegium Medicum Faculty of Medicine WSB University Dąbrowa Górnicza Poland
Department of Biostatistics and Translational Medicine Medical University of Łódź Łódź Poland
Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Urology Comprehensive Cancer Center Medical University of Vienna Vienna Austria
Department of Urology Medical University of Silesia Zabrze Poland
Department of Urology University of Texas Southwestern Dallas TX USA
Department of Urology Weill Cornell Medical College New York NY USA
Division of Urology Department of Special Surgery University of Jordan Amman Jordan
Karl Landsteiner Institute of Urology and Andrology Vienna Austria
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
PATH. Global HPV Vaccine Introduction Overview 2022. https://www.path.org/resources/global-hpv-vaccine-introduction-overview/ (accessed December 18, 2023).
Brisson M., Kim J.J., Canfell K., Drolet M., Gingras G., Burger E.A., et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet. 2020;395:575–590. doi: 10.1016/S0140-6736(20)30068-4. PubMed DOI PMC
Rose P.G., Bundy B.N., Watkins E.B., Thigpen J.T., Deppe G., Maiman M.A., et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;340:1144–1153. doi: 10.1056/NEJM199904153401502. PubMed DOI
Klopp A.H., Yeung A.R., Deshmukh S., Gil K.M., Wenzel L., Westin S.N., et al. Patient-reported toxicity during pelvic intensity-modulated radiation therapy: NRG oncology–RTOG 1203. J Clin Oncol. 2018;36:2538–2544. doi: 10.1200/JCO.2017.77.4273. PubMed DOI PMC
Chopra S., Gupta S., Kannan S., Dora T., Engineer R., Mangaj A., et al. Late toxicity after adjuvant conventional radiation versus image-guided intensity-modulated radiotherapy for cervical cancer (PARCER): a randomized controlled trial. J Clin Oncol. 2021;39:3682–3692. doi: 10.1200/JCO.20.02530. PubMed DOI
Miszczyk M., Majewski W. Hematologic toxicity of conformal radiotherapy and intensity modulated radiotherapy in prostate and bladder cancer patients. Asian Pac J Cancer Prev. 2018;19:2803–2806. doi: 10.22034/APJCP.2018.19.10.2803. PubMed DOI PMC
Ellis R.E. The distribution of active bone marrow in the adult. Phys Med Biol. 1961;5:255–258. doi: 10.1088/0031-9155/5/3/302. PubMed DOI
Mauch P., Constine L., Greenberger J., Knospe W., Sullivan J., Liesveld J.L., et al. Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys. 1995;31:1319–1339. doi: 10.1016/0360-3016(94)00430-S. PubMed DOI
Franco P., Arcadipane F., Ragona R., Mistrangelo M., Cassoni P., Racca P., et al. Hematologic toxicity in anal cancer patients during combined chemo-radiation: a radiation oncologist perspective. Expert Rev Anticancer Ther. 2017;17:335–345. doi: 10.1080/14737140.2017.1288104. PubMed DOI
Zhou P., Zhang Y., Luo S., Zhang S. Pelvic bone marrow sparing radiotherapy for cervical cancer: A systematic review and meta-analysis. Radiother Oncol. 2021;165:103–118. doi: 10.1016/j.radonc.2021.10.015. PubMed DOI
Williamson C.W., Sirák I., Xu R., Portelance L., Wei L., Tarnawski R., et al. Positron emission tomography-guided bone marrow-sparing radiation therapy for locoregionally advanced cervix cancer: final results from the INTERTECC Phase II/III Trial. Int J Radiat Oncol Biol Phys. 2022;112:169–178. doi: 10.1016/j.ijrobp.2021.08.019. PubMed DOI PMC
Arbyn M., Weiderpass E., Bruni L., de Sanjosé S., Saraiya M., Ferlay J., et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8:e191–e203. doi: 10.1016/S2214-109X(19)30482-6. PubMed DOI PMC
Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372 doi: 10.1136/bmj.n71. PubMed DOI PMC
Avau B., Van Remoortel H., De Buck E. Translation and validation of PubMed and Embase search filters for identification of systematic reviews, intervention studies, and observational studies in the field of first aid. J Med Libr Assoc. 2021;109:599–608. doi: 10.5195/jmla.2021.1219. PubMed DOI PMC
Ouzzani M., Hammady H., Fedorowicz Z., Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. doi: 10.1186/s13643-016-0384-4. PubMed DOI PMC
Rohatgi A. WebPlotDigitizer2022. https://automeris.io/.
Liu N., Zhou Y., Lee J.J. IPDfromKM: reconstruct individual patient data from published Kaplan-Meier survival curves. BMC Med Res Methodol. 2021;21:111. doi: 10.1186/s12874-021-01308-8. PubMed DOI PMC
Sterne J.A.C., Savović J., Page M.J., Elbers R.G., Blencowe N.S., Boutron I., et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366 doi: 10.1136/bmj.l4898. PubMed DOI
Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343 doi: 10.1136/bmj.d5928. PubMed DOI PMC
Xie Y., Li L. Analysis of the relationship between pelvic bone marrow protection and acute hematologic adverse effects of chemoradiotherapy for cervical cancer. Chin J Clinical Rational Drug Use. 2021;14:173–174. doi: 10.15887/j.cnki.13-1389/r.2021.23.072. DOI
Du C., Cai M., Lin F. Clinical observation of hematologic toxicity in intensity modulated radiotherapy for cervical cancer to restrict dosimetry of bone marrow irradiated. Med J West China. 2013;25:1857–1858. doi: 10.3969/j.issn.1672-3511.2013.12.036. DOI
Shen N. Medical University; HEBEI: 2015. Analysis of Dosimetry and Clinical Efficacy of Pelvic Bone Marrow-Sparing Intensity-Modulated Radiotherapy in Advanced Cervical Cancer.
Zhang Q., Wang H. Clinical study of bone marrow-sparing intensity-modulated radiation therapy for postoperative cervical cancer. Chin J Radiol Med Prot. 2015;35:441–444. doi: 10.3760/cma.j.issn.0254-5098.2015.06.009. DOI
Ran J., Zhang Y., Xue X., Shen J., Cui Y. Clinical study of bone marrow- sparing volumetric- modulated arc-radiation therapy for postoperative cervical cancer. Chin J General Pract. 2017;15:2021–2023. doi: 10.16766/j.cnki.issn.1674-4152.2017.12.005. DOI
Zhang D., Guo H., Zhang Q., Liu L. Dosimetric analysis of bone marrow-sparing pelvic intensity-modulated radiotherapy after surgery for cervical cancer. Chin. J Radiat Oncol. 2017;26:1303–1307. doi: 10.3760/cma.j.issn.1004-4221.2017.11.013. DOI
Liao B. Guangzhou Medical University; 2018. Analysis of dosimetry and acute toxicity of bone marrow sparing intensity modulated radiotherapy in lymph-node positive cervical cancer.
Luo C., Lai L., Huang J., Xu S., Mo W., Tang H. Application of whole-pelvic intensity modulated radiotherapy to protect bone marrow in postoperative concurrent chemotherapy for cervical cancer. J Chin Res. 2018;35:347–349. doi: 10.3969/j.issn.1671-7171.2018.02.046. DOI
Sun S. Wenzhou Medical University; 2018. Clinical Study on Acute Toxicity of Pelvic Bone Marrow-Sparing Intensity-Modulated Radiotherapy in Cervical Cancer after Hysterectomy.
Fang M., Zhou Y., Yang H., Zheng J., Gao Y., Li Z., et al. Comparison of the effects of limited and unlimited pelvic bone marrow doses in postoperative intensity-modulated radiation therapy for cervical cancer. China Med Pharmacy. 2019;9:149–151. doi: 10.3969/j.issn.2095-0616.2019.15.044. DOI
Feng J., Lin J., Liao S., Luo H., Fu Z. The relationship between bone marrow suppression and dose volume of bone marrow irradiation for the postoperative cervical cancer patients received intensity modulated radiotherapy. Int J Radiat Med Nucl Med. 2020;44:143–150. doi: 10.3760/cma.j.cn121381-201811039-00002. DOI
Kailiman A., Qi X., Zhao H. Dosimetry of pelvic bone marrow sparing intensity modulated radiotherapy simultaneous chemotherapy in patients with lymph node-positive cervical cancer. Oncol Prog. 2021;19(2133–6):2148. doi: 10.11877/j.issn.1672-1535.2021.19.20.22. DOI
Huang J., Gu F., Ji T., Zhao J., Li G. Pelvic bone marrow sparing intensity modulated radiotherapy reduces the incidence of the hematologic toxicity of patients with cervical cancer receiving concurrent chemoradiotherapy: a single-center prospective randomized controlled trial. Radiat Oncol. 2020;15:180. doi: 10.1186/s13014-020-01606-3. PubMed DOI PMC
Kapoor A.R., Bhalavat R.L., Chandra M., Pareek V., Moosa Z., Markana S., et al. A randomized study for dosimetric assessment and clinical impact of bone marrow sparing intensity-modulated radiation therapy versus 3-dimensional conformal radiation therapy on hematological and gastrointestinal toxicities in cervical cancer. J Cancer Res Ther. 2022;18:1490. doi: 10.4103/jcrt.JCRT_1242_20. PubMed DOI
El-Tawab ASMMAEN, Barakat AF, Hussien FZ, Ghanam AAEA, Hakim MMA. Bone marrow sparing intensity modulated radiotherapy concurrent with chemotherapy for treatment of cervical malignancy. Oncology and Radiotherapy 2023;17:108–15.
Wang S., Liu J., Lei K., Jia Y., Wang C., Zhang X., et al. Single-photon emission computed tomography-defined active bone marrow-sparing volumetric-modulated arc therapy reduces the incidence of acute hematologic toxicity in locally advanced cervical cancer patients who receive chemoradiotherapy: A single-center prospective randomized controlled trial. Cancer. 2023;129:1995–2003. doi: 10.1002/cncr.34771. PubMed DOI
Sun S., Chen Z., Li P., Wu J., Zhu B., Zhang X., et al. Clinical study of acute toxicity of pelvic bone marrow-sparing intensity-modulated radiotherapy for cervical cancer. Ginekol Pol. 2023;94:101–106. doi: 10.5603/GP.a2021.0234. PubMed DOI
Cox J.D., Stetz J., Pajak T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European organization for research and treatment of cancer (EORTC) Int J Radiation Oncol Biol Phys. 1995;31:1341–1346. doi: 10.1016/0360-3016(95)00060-C. PubMed DOI
Rajwa P., Pradere B., Gandaglia G., van den Bergh R.C.N., Tsaur I., Shim S.R., et al. Intensification of systemic therapy in addition to definitive local treatment in nonmetastatic unfavourable prostate cancer: a systematic review and meta-analysis. Eur Urol. 2022;82:82–96. doi: 10.1016/j.eururo.2022.03.031. PubMed DOI
Ploussard G., Daneshmand S., Efstathiou J.A., Herr H.W., James N.D., Rödel C.M., et al. Critical analysis of bladder sparing with trimodal therapy in muscle-invasive bladder cancer: a systematic review. Eur Urol. 2014;66:120–137. doi: 10.1016/j.eururo.2014.02.038. PubMed DOI
Bahadoer R.R., Dijkstra E.A., van Etten B., Marijnen C.A.M., Putter H., Kranenbarg E.-M.-K., et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:29–42. doi: 10.1016/S1470-2045(20)30555-6. PubMed DOI
Rao S., Guren M.G., Khan K., Brown G., Renehan A.G., Steigen S.E., et al. Anal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up☆. Ann Oncol. 2021;32:1087–1100. doi: 10.1016/j.annonc.2021.06.015. PubMed DOI
Arcadipane F., Silvetti P., Olivero F., Gastino A., De Luca V., Mistrangelo M., et al. Bone Marrow-Sparing IMRT in Anal Cancer Patients Undergoing Concurrent Chemo-Radiation: Results of the First Phase of a Prospective Phase II Trial. Cancers (basel) 2020;12:3306. doi: 10.3390/cancers12113306. PubMed DOI PMC
Arcadipane F., Silvetti P., Olivero F., Gastino A., Carlevato R., Chiovatero I., et al. Concurrent Chemoradiation in Anal Cancer Patients Delivered with Bone Marrow-Sparing IMRT: Final Results of a Prospective Phase II Trial. J Personalized Med. 2021;11:427. doi: 10.3390/jpm11050427. PubMed DOI PMC
Damen P.J.J., Kroese T.E., van Hillegersberg R., Schuit E., Peters M., Verhoeff J.J.C., et al. The Influence of Severe Radiation-Induced Lymphopenia on Overall Survival in Solid Tumors: A Systematic Review and Meta-Analysis. Int J Radiation Oncol Biol Phys. 2021;111:936–948. doi: 10.1016/j.ijrobp.2021.07.1695. PubMed DOI
Taguchi A., Furusawa A., Ito K., Nakajima Y., Shimizuguchi T., Hara K., et al. Postradiotherapy persistent lymphopenia as a poor prognostic factor in patients with cervical cancer receiving radiotherapy: a single-center, retrospective study. Int J Clin Oncol. 2020;25:955–962. doi: 10.1007/s10147-020-01623-y. PubMed DOI
Schmid M.P., Franckena M., Kirchheiner K., Sturdza A., Georg P., Dörr W., et al. Distant metastasis in patients with cervical cancer after primary radiotherapy with or without chemotherapy and image guided adaptive brachytherapy. Gynecol Oncol. 2014;133:256–262. doi: 10.1016/j.ygyno.2014.02.004. PubMed DOI
Liu X., Hou X., Hu K., Zhang F., Wang W., Ren K. Risk Factors for Nodal Failure in Patients with FIGO IIIC Cervical Cancer Receiving Definitive Image-Guided Radiotherapy. Curr Oncol. 2023;30:10385–10395. doi: 10.3390/curroncol30120756. PubMed DOI PMC
Ramlov A., Pedersen E.M., Røhl L., Worm E., Fokdal L., Lindegaard J.C., et al. Risk Factors for Pelvic Insufficiency Fractures in Locally Advanced Cervical Cancer Following Intensity Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017;97:1032–1039. doi: 10.1016/j.ijrobp.2017.01.026. PubMed DOI
Fiandra C., Rosati S., Arcadipane F., Dinapoli N., Fato M., Franco P., et al. Active bone marrow segmentation based on computed tomography imaging in anal cancer patients: A machine-learning-based proof of concept. Phys Med. 2023;113 doi: 10.1016/j.ejmp.2023.102657. PubMed DOI
Andreychenko A., Kroon P.S., Maspero M., Jürgenliemk-Schulz I., De Leeuw A.A.C., Lam M.G.E.H., et al. The feasibility of semi-automatically generated red bone marrow segmentations based on MR-only for patients with gynecologic cancer. Radiother Oncol. 2017;123:164–168. doi: 10.1016/j.radonc.2017.01.020. PubMed DOI
Wortel G., Eekhout D., Lamers E., van der Bel R., Kiers K., Wiersma T., et al. Characterization of automatic treatment planning approaches in radiotherapy. Phys Imaging Radiation Oncol. 2021;19:60–65. doi: 10.1016/j.phro.2021.07.003. PubMed DOI PMC