Temporal dynamics of lymphocytes in prostate cancer patients treated with proton therapy

. 2025 ; 15 () : 1470876. [epub] 20250416

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40308498

Radiotherapy can be both immunosuppressive and immunostimulatory. Radiation-induced lymphopenia (RIL) is an ongoing challenge in cancer treatment. We investigated weekly changes in the absolute lymphocyte count (ALC) during proton radiotherapy, evaluating the effects of different dosage, fractionation schedules, and pelvic node irradiation (PNI). Prostate cancer patients were prospectively chosen for this study, due to their relatively homogenous treatment plans. Treatment protocols were categorized into three groups: Group A (n=52) received 36.25 Gy/5-fractions, Group B (n=60) underwent 63 Gy/21-fractions and group C (n=69) received 63 Gy/21-fractions plus PNI. To account for individual characteristic differences, a new categorization method was made, according to the change in ALC relative to the baseline. Lymphopenia (ALC < 1000 K/μL) developed in 8%, 17% and 84% of patients in groups A, B, and C, respectively. An initial increase in ALC occurred in 44%, 47% and 28% of groups A, B and C, respectively, and declined with proceeding fractions. Patients with PNI had the most pronounced reduction in their ALC relative to the baseline. Increased dosage and fractionation led to a higher incidence of lymphopenia. Understanding which factors influence ALC in particle therapy is vital for leveraging the immune-enhancing effects of radiotherapy, while minimising its immunosuppressive impacts.

Zobrazit více v PubMed

Ellsworth SG. Field size effects on the risk and severity of treatment- induced lymphopenia in patients undergoing radiation therapy for solid tumors, Adv. Radiat. Oncol. (2018) 3:512–9. doi: 10.1016/j.adro.2018.08.014 PubMed DOI PMC

Nakamura N, Kusunoki Y, Akiyama M. Radiosensitivity of CD4 or CD8 positive human t-lymphocytes by an in vitro colony formation assay. Radiat. Res. (1990) 123:224–7. doi: 10.2307/3577549 PubMed DOI

Damen PJJ, Kroese TE, van Hillegersberg R, Schuit E, Peters M, Verhoeff JJC, et al. . The influence of severe radiation-induced lymphopenia on overall survival in solid tumors: A systematic review and meta-analysis. Int J Radiat. Oncol Biol Phys. (2021) 111:936–48. doi: 10.1016/j.ijrobp.2021.07.1695 PubMed DOI

Sini C, Fiorino C, Perna L, Noris Chiorda B, Deantoni CL, Bianchi M, et al. . Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation. Radiother. Oncol. (2016) 118:79–84. doi: 10.1016/j.radonc.2015.11.020 PubMed DOI

Zhang J, Yang L, Li H, Chan JW, Lee EKW, Liu M, et al. . Dosimetric effect of thymus and thoracic duct on Radiation-Induced lymphopenia in patients with primary lung cancer who received thoracic radiation. Adv Radiat Oncol. (2023) 8(6):101260. doi: 10.1016/j.adro.2023.101260 PubMed DOI PMC

Ko EC, Benjamin KT, Formenti SC. Generating antitumor immunity by targeted radiation therapy: Role of dose and fractionation. Adv Radiat. Oncol. (2018) 3:486–93. doi: 10.1016/j.adro.2018.08.021 PubMed DOI PMC

Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Gal-luzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol. (2020) 21:120–34. doi: 10.1038/s41590-019-0561-4 PubMed DOI

Spiotto M, Fu Y-X, Weichselbaum RR. The intersection of radio- therapy and immunotherapy: mechanisms and clinical implications. Sci Immunol. (2016) 1:eaag1266–eaag1266. doi: 10.1126/sciimmunol.aag1266 PubMed DOI PMC

Wang L, Lynch C, Pitroda SP, Piffk ´o A, Yang K, Huser AK, et al. . Radiotherapy and immunology. J Exp Med. (2024) 221:e20232101. doi: 10.1084/jem.20232101 PubMed DOI PMC

Formenti SC, Demaria S. Radiation therapy to convert the tumor into an. Situ. (2012) vaccine:879–80. doi: 10.1016/j.ijrobp.2012.06.020 PubMed DOI PMC

Chen C, Liu Y, Cui B. Effect of radiotherapy on T cell and PD-1/PD-L1 blocking therapy in tumor microenvironment. Hum Vaccin Immunother. (2021) 17:1555–67. doi: 10.1080/21645515.2020.1840254 PubMed DOI PMC

Li T, Qian X, Liu J, Xue F, Luo J, Yao G, et al. . Radiotherapy plus immune checkpoint inhibitor in prostate cancer. Front Oncol. (2023) 13:1210673. doi: 10.3389/fonc.2023.1210673 PubMed DOI PMC

Porter L, Harrison S, Risbridger G, Lister N, Taylor R. Left out in the cold: Moving beyond hormonal therapy for the treatment of immunologically cold prostate cancer with car t cell immunotherapies. J Steroid Biochem Mol Biol. (2024) 243:106571. doi: 10.1016/j.jsbmb.2024.106571 PubMed DOI

Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduction Targeted Ther. (2024) 9:274. doi: 10.1038/s41392-024-01979-x PubMed DOI PMC

SChad MD, Dutta SW, Muller DM, Wijesooriya K, Showalter TN. Radiation-related lymphopenia after pelvic nodal irradiation for prostate cancer. Adv Radiat. Oncol. (2019) 4:323–30. doi: 10.1016/j.adro.2019.01.005 PubMed DOI PMC

Xiang X, Li N, Ding Z, Dai Z, Jin J. Peripheral lymphocyte counts and lymphocyte-related inflammation indicators during radiotherapy for pelvic Malignancies: Temporal characterization and dosimetric predictors. Technol Cancer Res Treat. (2022) 21:15330338221116494. doi: 10.1177/15330338221116494 PubMed DOI PMC

Mohan R, Liu AY, Brown PD, Mahajan A, Dinh J, Chung C, et al. . Proton therapy reduces the likelihood of high-grade radiation-induced lymphopenia in glioblastoma pa- tients: phase II randomized study of protons vs photons. Neuro. Oncol. (2021) 23:284–94. doi: 10.1093/neuonc/noaa182 PubMed DOI PMC

Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. . Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. (2006) 203:1259–71. doi: 10.1084/jem.20052494 PubMed DOI PMC

John-Aryankalayil M, Palayoor ST, Cerna D, Simone CB, Falduto MT, Magnuson SR, et al. . Fractionated radiation therapy can induce a molecular profile for therapeutic targeting. Radiat. Res. (2010) 174:446–58. doi: 10.1667/RR2105.1 PubMed DOI

Institute CR. Immunotherapy for prostate cancer (2023). Available online at: https://www.cancerresearch.org/cancer-types/prostate-cancer (Accessed April 15, 2024).

Wallace KL, Landsteiner A, Bunner SH, Engel-Nitz NM, Luckenbaugh AN. Increasing prevalence of metastatic castration-resistant prostate cancer in a managed care population in the United States. Cancer Causes Control. (2021) 32:1365–74. doi: 10.1007/s10552-021-01484-4 PubMed DOI

Harris TJ, Hipkiss EL, Borzillary S, Wada S, Grosso JF, Yen H-R, et al. . Radiotherapy augments the immune response to prostate cancer in a time-dependent manner. Prostate. (2008) 68:1319–1329. doi: 10.1002/pros.v68:12 PubMed DOI PMC

Altorki NK, McGraw TE, Borczuk AC, Saxena A, Port JL, Stiles BM, et al. . Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non- small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. (2021) 22:824–35. doi: 10.1016/S1470-2045(21)00149-2 PubMed DOI

Miszczyk M, Majewski W. Hematologic toxicity of conformal radiotherapy and intensity modulated radiotherapy in prostate and bladder cancer patients. Asian Pac. J Cancer Prev. (2018) 19:2803–6. doi: 10.22034/APJCP.2018.19.10.2803 PubMed DOI PMC

Pinkawa M, Ribbing C, Djukic V, Klotz J, Holy R, Eble MJ. Early hematologic changes during prostate cancer radiotherapy predictive for late urinary and bowel toxicity. Strahlenther. Onkol. (2015) 191:771–7. doi: 10.1007/s00066-015-0841-3 PubMed DOI

Cozzarini C, Noris Chiorda B, Sini C, Fiorino C, Briganti A, Montorsi F, et al. . Hematologic toxicity in patients treated with postprostatectomy whole-pelvis irradiation with different intensity modulated radiation therapy techniques is not negligible and is prolonged: preliminary results of a longitudinal, observational study. Int J Radiat Oncol Biol Phys. (2016) 95:690–5. doi: 10.1016/j.ijrobp.2016.01.022 PubMed DOI

d’Alesio V, Pacelli R, Durante M, Canale Cama G, Cella L, Gialanella G, et al. . Lymph nodes in the irradiated field influence the yield of radiation-induced chromosomal aberrations in lymphocytes from breast cancer patients. Int J Radiat. Oncol Biol Phys. (2003) 57:732–8. doi: 10.1016/S0360-3016(03)00664-3 PubMed DOI

Jones D, Pereira ER, Padera TP. Growth and immune evasion of lymph node metastasis. Front Oncol. (2018) 8:36. doi: 10.3389/fonc.2018.00036 PubMed DOI PMC

van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Immunotherapy goes local: The central role of lymph nodes in driving tumor infiltration and efficacy. Front Immunol. (2021) 12:643291. doi: 10.3389/fimmu.2021.643291 PubMed DOI PMC

Chinen J, Fleisher TA, Shearer WT. “2 -adaptive immunity”, In: Adkinson NF, Bochner BS, Burks AW, Busse WW, Holgate ST, Lemanske RF, et al.. editors. Middleton’s Allergy (Eighth Edition). W.B. Saunders, London: (2014). p. 20–9. Available online at: https://www.sciencedirect.com/science/article/pii/B9780323085939000036 (Accessed June 10, 2024).

Rose BS, Liang Y, Lau SK, Jensen LG, Yashar CM, Hoh CK, et al. . Correlation between radiation dose to 18f-fdg-pet defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat OncologyBiologyPhysics. (2012) 83:1185–91. doi: 10.1016/j.ijrobp.2011.09.048 PubMed DOI

Mell LK, Kochanski JD, Roeske JC, Haslam JJ, Mehta N, Yamada SD, et al. . Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy. Int J Radiat. Oncol Biol Phys. (2006) 66:1356–65. doi: 10.1016/j.ijrobp.2006.03.018 PubMed DOI

Rose BS, Aydogan B, Liang Y, Yeginer M, Hasselle MD, Dandekar V, et al. . Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncology Biology Phys. (2011) 79:800–807. doi: 10.1016/j.ijrobp.2009.11.010 PubMed DOI PMC

Iorio GC, Spieler BO, Ricardi U, Dal Pra A. The impact of pelvic nodal radiotherapy on hematologic toxicity: A systematic review with focus on leukopenia, lymphopenia and future perspectives in prostate cancer treatment. Crit Rev Oncol Hematol. (2021) 168:103497. doi: 10.1016/j.critrevonc.2021.103497 PubMed DOI

Williamson CW, Sir’ak I, Xu R, Portelance L, Wei L, Tarnawski R, et al. . Positron emission tomography-guided bone marrow-sparing radiation therapy for locoregionally advanced cervix cancer: Final results from the INTERTECC phase II/III trial. Int J Radiat. Oncol Biol Phys. (2022) 112:169–78. doi: 10.1016/j.ijrobp.2021.08.019 PubMed DOI PMC

Baré M, Poeta S, Fernandes P, Jourani Y, Otte F-X, Brussel SV, et al. . Lymphocyte-sparing pelvic radiotherapy for prostate cancer: An in-silico study. Phys Imaging Radiat Oncol. (2022) 23:127–33. doi: 10.1016/j.phro.2022.07.006 PubMed DOI PMC

Saidakova EV. Lymphopenia and mechanisms of t-cell regeneration. Cell Tissue Biol. (2022) 16:302–11. doi: 10.1134/S1990519X2204006X PubMed DOI PMC

Dummer W, Ernst B, LeRoy E, Lee D, Surh C. Autologous regulation of naive T cell homeostasis within the T cell compartment. J Immunol. (2001) 166:2460–8. doi: 10.4049/jimmunol.166.4.2460 PubMed DOI

Pham T-N, Coupey J, Candeias SM, Ivanova V, Valable S, Thariat J. Beyond lymphopenia, unraveling radiation-induced leucocyte subpopulation kinetics and mechanisms through modeling approaches. J Exp Clin Cancer Res. (2023) 42:50. doi: 10.1186/s13046-023-02621-4 PubMed DOI PMC

Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, et al. . Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol. (2005) 175:2741–53. doi: 10.4049/jimmunol.175.4.2741 PubMed DOI

Lambin P, Lieverse RI, Eckert F, Marcus D, Oberije C, van der Wiel AM, et al. . Lymphocyte-sparing radiotherapy: The rationale for protecting lymphocyte-rich organs when combining radiotherapy with immunotherapy. Semin Radiat Oncol. (2020) 30:187–93. doi: 10.1016/j.semradonc.2019.12.003 PubMed DOI PMC

Arina A, Beckett M, Fernandez C, Zheng W, Pitroda S, Chmura SJ, et al. . Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat Commun. (2019) 10:3959. doi: 10.1038/s41467-019-11906-2 PubMed DOI PMC

Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E. The etiology of treatment-related lymphopenia in patients with Malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. (2013) 31:140–4. doi: 10.3109/07357907.2012.762780 PubMed DOI PMC

Shiraishi Y, Fang P, Xu C, Song J, Krishnan S, Koay EJ, et al. . Severe lymphopenia during neoadjuvant chemoradiation for esophageal cancer: A propensity matched analysis of the relative risk of proton versus photon- based radiation therapy. Radiother. Oncol. (2018) 128:154–60. doi: 10.1016/j.radonc.2017.11.028 PubMed DOI PMC

Gameiro SR, Malamas AS, Bernstein MB, Tsang KY, Vassantachart A, Sahoo N, et al. . Tumor cells surviving exposure to proton or photon radiation share a common immunogenic modulation signature, rendering them more sensitive to T cell-mediated killing. Int J Radiat. Oncol Biol Phys. (2016) 95:120–30. doi: 10.1016/j.ijrobp.2016.02.022 PubMed DOI PMC

De Ornelas M, Iorio GC, Bossart E, Ricardi U, Seldon C, Pra AD, et al. . Bone marrow sparing in prostate cancer patients treated with Post-operative pelvic nodal radiotherapy - A proton versus photon comparison. Phys Med. (2023) 112:102644. doi: 10.1016/j.ejmp.2023.102644 PubMed DOI

Emami B. Tolerance of normal tissue to therapeutic radiation. Rep Radiother Oncol. (2013) 1:35–48. doi: 10.1016/0360-3016(91)90171-y PubMed DOI

Dinges E, Felderman N, McGuire S, Gross B, Bhatia S, Mott S, et al. . Bone marrow sparing in intensity modulated proton therapy for cervical cancer: Efficacy and robustness under range and setup uncertainties. Radiotherapy Oncol. (2015) 115:373–8. doi: 10.1016/j.radonc.2015.05.005 PubMed DOI PMC

Prasad RN, Freese C, Sudhoff M, Meier T, Lewis L, Mascia A, et al. . Absolute volume of active bone marrow and total bone marrow spared in anal cancer patients using intensity modulated proton versus volumetric arc therapy. J Radiat Oncol. (2018) 7:69–75. doi: 10.1007/s13566-017-0329-0 DOI

Anand A, Bues M, Rule WG, Keole SR, Beltran CJ, Yin J, et al. . Scanning proton beam therapy reduces normal tissue exposure in pelvic radiotherapy for anal cancer. Radiotherapy Oncol. (2015) 117:505–8. doi: 10.1016/j.radonc.2015.10.027 PubMed DOI

Press RH, Shelton JW, Zhang C, Dang Q, Tian S, Shu T, et al. . Bone marrow suppression during postoperative radiation for bladder cancer and comparative benefit of proton therapy—Phase 2 trial secondary analysis. Int J Particle Ther. (2021) 8:1–10. doi: 10.14338/IJPT-21-00003.1 PubMed DOI PMC

Kubeš J, Haas A, Vondráček V, Andrlík M, Navrátil M, Sláviková S, et al. . Ultrahypofrac- tionated proton radiation therapy in the treatment of low and Intermediate- Risk prostate Cancer-5-Year outcomes. Int J Radiat Oncology Biology Phys. (2021) 110:1090–7. doi: 10.1016/j.ijrobp.2021.02.014 PubMed DOI

van As N, Griffin C, Tree A, Patel J, Ostler P, van der Voet H, et al. . Phase 3 trial of stereotactic body radiotherapy in localized prostate cancer. N Engl J Med. (2024) 391:1413–25. doi: 10.1056/NEJMoa2403365 PubMed DOI PMC

Wild AT, Herman JM, Dholakia AS, Moningi S, Lu Y, Rosati LM, et al. . Lymphocyte-sparing effect of stereotactic body radiation therapy in patients with unresectable pancreatic cancer. Int J Radiat OncologyBiologyPhysics. (2016) 94:571–9. doi: 10.1016/j.ijrobp.2015.11.026 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...