• Je něco špatně v tomto záznamu ?

Computational tools for designing smart libraries

E. Sebestova, J. Bendl, J. Brezovsky, J. Damborsky,

. 2014 ; 1179 (-) : 291-314.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15014129

Traditional directed evolution experiments are often time-, labor- and cost-intensive because they involve repeated rounds of random mutagenesis and the selection or screening of large mutant libraries. The efficiency of directed evolution experiments can be significantly improved by targeting mutagenesis to a limited number of hot-spot positions and/or selecting a limited set of substitutions. The design of such "smart" libraries can be greatly facilitated by in silico analyses and predictions. Here we provide an overview of computational tools applicable for (a) the identification of hot-spots for engineering enzyme properties, and (b) the evaluation of predicted hot-spots and selection of suitable amino acids for substitutions. The selected tools do not require any specific expertise and can easily be implemented by the wider scientific community.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15014129
003      
CZ-PrNML
005      
20150428111441.0
007      
ta
008      
150420s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/978-1-4939-1053-3_20 $2 doi
035    __
$a (PubMed)25055786
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sebestova, Eva $u Loschmidt Laboratories, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
245    10
$a Computational tools for designing smart libraries / $c E. Sebestova, J. Bendl, J. Brezovsky, J. Damborsky,
520    9_
$a Traditional directed evolution experiments are often time-, labor- and cost-intensive because they involve repeated rounds of random mutagenesis and the selection or screening of large mutant libraries. The efficiency of directed evolution experiments can be significantly improved by targeting mutagenesis to a limited number of hot-spot positions and/or selecting a limited set of substitutions. The design of such "smart" libraries can be greatly facilitated by in silico analyses and predictions. Here we provide an overview of computational tools applicable for (a) the identification of hot-spots for engineering enzyme properties, and (b) the evaluation of predicted hot-spots and selection of suitable amino acids for substitutions. The selected tools do not require any specific expertise and can easily be implemented by the wider scientific community.
650    _2
$a výpočetní biologie $x metody $7 D019295
650    12
$a řízená evoluce molekul $7 D019020
650    _2
$a genová knihovna $7 D015723
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bendl, Jaroslav
700    1_
$a Brezovsky, Jan
700    1_
$a Damborsky, Jiri
773    0_
$w MED00180389 $t Methods in molecular biology (Clifton, N.J.) $x 1940-6029 $g Roč. 1179, č. - (2014), s. 291-314
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25055786 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150420 $b ABA008
991    __
$a 20150428111744 $b ABA008
999    __
$a ok $b bmc $g 1071710 $s 897007
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 1179 $c - $d 291-314 $i 1940-6029 $m Methods in molecular biology $n Methods Mol Biol $x MED00180389
LZP    __
$a Pubmed-20150420

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...