-
Je něco špatně v tomto záznamu ?
Computational tools for designing smart libraries
E. Sebestova, J. Bendl, J. Brezovsky, J. Damborsky,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- genová knihovna MeSH
- řízená evoluce molekul * MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Traditional directed evolution experiments are often time-, labor- and cost-intensive because they involve repeated rounds of random mutagenesis and the selection or screening of large mutant libraries. The efficiency of directed evolution experiments can be significantly improved by targeting mutagenesis to a limited number of hot-spot positions and/or selecting a limited set of substitutions. The design of such "smart" libraries can be greatly facilitated by in silico analyses and predictions. Here we provide an overview of computational tools applicable for (a) the identification of hot-spots for engineering enzyme properties, and (b) the evaluation of predicted hot-spots and selection of suitable amino acids for substitutions. The selected tools do not require any specific expertise and can easily be implemented by the wider scientific community.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15014129
- 003
- CZ-PrNML
- 005
- 20150428111441.0
- 007
- ta
- 008
- 150420s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/978-1-4939-1053-3_20 $2 doi
- 035 __
- $a (PubMed)25055786
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Sebestova, Eva $u Loschmidt Laboratories, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- 245 10
- $a Computational tools for designing smart libraries / $c E. Sebestova, J. Bendl, J. Brezovsky, J. Damborsky,
- 520 9_
- $a Traditional directed evolution experiments are often time-, labor- and cost-intensive because they involve repeated rounds of random mutagenesis and the selection or screening of large mutant libraries. The efficiency of directed evolution experiments can be significantly improved by targeting mutagenesis to a limited number of hot-spot positions and/or selecting a limited set of substitutions. The design of such "smart" libraries can be greatly facilitated by in silico analyses and predictions. Here we provide an overview of computational tools applicable for (a) the identification of hot-spots for engineering enzyme properties, and (b) the evaluation of predicted hot-spots and selection of suitable amino acids for substitutions. The selected tools do not require any specific expertise and can easily be implemented by the wider scientific community.
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 12
- $a řízená evoluce molekul $7 D019020
- 650 _2
- $a genová knihovna $7 D015723
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Bendl, Jaroslav
- 700 1_
- $a Brezovsky, Jan
- 700 1_
- $a Damborsky, Jiri
- 773 0_
- $w MED00180389 $t Methods in molecular biology (Clifton, N.J.) $x 1940-6029 $g Roč. 1179, č. - (2014), s. 291-314
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25055786 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150420 $b ABA008
- 991 __
- $a 20150428111744 $b ABA008
- 999 __
- $a ok $b bmc $g 1071710 $s 897007
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 1179 $c - $d 291-314 $i 1940-6029 $m Methods in molecular biology $n Methods Mol Biol $x MED00180389
- LZP __
- $a Pubmed-20150420