High Dose of Acute Normobaric Hypoxia Does Not Adversely Affect Sprint Interval Training, Cognitive Performance and Heart Rate Variability in Males and Females

. 2022 Oct 06 ; 11 (10) : . [epub] 20221006

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36290367

Although preliminary studies suggested sex-related differences in physiological responses to hypoxia, the effects of sex on sprint interval training (SIT) performance in different degrees of hypoxia are largely lacking. The aim of this study was to examine the acute effect of different doses of normobaric hypoxia on SIT performance as well as heart rate variability (HRV) and cognitive performance (CP) in amateur-trained team sport players by comparing potential sex differences. In a randomized, double-blind, crossover design, 26 (13 females) amateur team-sport (football, basketball, handball, rugby) players completed acute SIT (6 × 15 s all-out sprints, separated with 2 min active recovery, against a load equivalent to 9% of body weight) on a cycle ergometer, in one of four conditions: (I) normoxia without a mask (FiO2: 20.9%) (CON); (II) normoxia with a mask (FiO2: 20.9%) (NOR); (III) moderate hypoxia (FiO2: 15.4%) with mask (MHYP); and (IV) high hypoxia (FiO2: 13.4%) with mask (HHYP). Peak (PPO) and mean power output (MPO), HRV, heart rate (HR), CP, capillary lactate (BLa), and ratings of perceived exertion (RPE) pre- and post-SIT were compared between CON, NOR, MHYP and HHYP. There were no significant differences found between trials for PPO (p = 0.55), MPO (p = 0.44), RPE (p = 0.39), HR (p = 0.49), HRV (p > 0.05) and CP (response accuracy: p = 0.92; reaction time: p = 0.24). The changes in MP, PP, RPE, HR, CP and HRV were similar between men and women (all p > 0.05). While BLa was similar (p = 0.10) between MHYP and HHYP trials, it was greater compared to CON (p = 0.01) and NOR (p = 0.01), without a sex-effect. In conclusion, compared to normoxia, hypoxia, and wearing a mask, have no effect on SIT acute responses (other than lactate), including PP, MP, RPE, CP, HR, and cardiac autonomic modulation either in men or women.

Zobrazit více v PubMed

Yamagishi T., Babraj J. Effects of reduced-volume of sprint interval training and the time course of physiological and performance adaptations. Scand. J. Med. Sci. Sport. 2017;27:1662–1672. doi: 10.1111/sms.12831. PubMed DOI

Burgomaster K.A., Hughes S.C., Heigenhauser G.J., Bradwell S.N., Gibala M.J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005;98:1985–1990. doi: 10.1152/japplphysiol.01095.2004. PubMed DOI

Clark S.A., Chen Z.-P., Murphy K.T., Aughey R., McKenna M., Kemp B.E., Hawley J.A. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2004;286:E737–E743. doi: 10.1152/ajpendo.00462.2003. PubMed DOI

Burgomaster K.A., Heigenhauser G.J., Gibala M.J. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J. Appl. Physiol. 2006;100:2041–2047. doi: 10.1152/japplphysiol.01220.2005. PubMed DOI

Edge J., Bishop D., Goodman C. Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J. Appl. Physiol. 2006;101:918–925. doi: 10.1152/japplphysiol.01534.2005. PubMed DOI

Vogt M., Puntschart A., Geiser J., Zuleger C., Billeter R., Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J. Appl. Physiol. 2001;91:173–182. doi: 10.1152/jappl.2001.91.1.173. PubMed DOI

Schmutz S., Däpp C., Wittwer M., Durieux A.C., Mueller M., Weinstein F., Vogt M., Hoppeler H., Flück M. A hypoxia complement differentiates the muscle response to endurance exercise. Exp. Physiol. 2010;95:723–735. doi: 10.1113/expphysiol.2009.051029. PubMed DOI

Zoll J., Ponsot E., Dufour S., Doutreleau S., Ventura-Clapier R., Vogt M., Hoppeler H., Richard R., Flück M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J. Appl. Physiol. 2006;100:1258–1266. doi: 10.1152/japplphysiol.00359.2005. PubMed DOI

Puype J., Van Proeyen K., Raymackers J.-M., Deldicque L., Hespel P. Sprint interval training in hypoxia stimulates glycolytic enzyme activity. Med. Sci. Sport. Exerc. 2013;45:2166–2174. doi: 10.1249/MSS.0b013e31829734ae. PubMed DOI

Faiss R., Léger B., Vesin J.-M., Fournier P.-E., Eggel Y., Dériaz O., Millet G.P. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE. 2013;8:e56522. doi: 10.1371/journal.pone.0056522. PubMed DOI PMC

Warnier G., Benoit N., Naslain D., Lambrecht S., Francaux M., Deldicque L. Effects of sprint interval training at different altitudes on cycling performance at sea-level. Sports. 2020;8:148. doi: 10.3390/sports8110148. PubMed DOI PMC

Millet G.P., Girard O., Beard A., Brocherie F. Repeated sprint training in hypoxia–an innovative method. Dtsch. Z. Für Sportmed. 2019;5:115–122. doi: 10.5960/dzsm.2019.374. DOI

Faiss R., Girard O., Millet G.P. Advancing hypoxic training in team sports: From intermittent hypoxic training to repeated sprint training in hypoxia. Br. J. Sport Med. 2013;47:i45–i50. doi: 10.1136/bjsports-2013-092741. PubMed DOI PMC

Millet G.P., Faiss R. Hypoxic conditions and exercise-to-rest ratio are likely paramount. Sports Med. 2012;42:1081–1083. PubMed

Bowtell J.L., Cooke K., Turner R., Mileva K.N., Sumners D.P. Acute physiological and performance responses to repeated sprints in varying degrees of hypoxia. J. Sci. Med. Sport. 2014;17:399–403. doi: 10.1016/j.jsams.2013.05.016. PubMed DOI

Goods P.S., Dawson B., Landers G.J., Gore C.J., Peeling P. No additional benefit of repeat-sprint training in hypoxia than in normoxia on sea-level repeat-sprint ability. J. Sport. Sci. Med. 2015;14:681. PubMed PMC

Khaosanit P., Hamlin M.J., Graham K.S., Boonrod W. Acute effect of different normobaric hypoxic conditions on shuttle repeated sprint performance in futsal players. J. Phys. Educ. Sport. 2018;18:210–216.

Kon M., Nakagaki K., Ebi Y., Nishiyama T., Russell A.P. Hormonal and metabolic responses to repeated cycling sprints under different hypoxic conditions. Growth Horm. IGF Res. 2015;25:121–126. doi: 10.1016/j.ghir.2015.03.002. PubMed DOI

Karabiyik H., Eser M.C., Guler O., Yasli B.C., Ertetik G., Sisman A., Koz M., Gabrys T., Pilis K., Karayigit R. The effects of 15 or 30 s SIT in normobaric hypoxia on aerobic, anaerobic performance and critical power. Int. J. Environ. Res. Public Health. 2021;18:3976. doi: 10.3390/ijerph18083976. PubMed DOI PMC

Zupet P., Princi T., Finderle Z. Effect of hypobaric hypoxia on heart rate variability during exercise: A pilot field study. Eur. J. Appl. Physiol. 2009;107:345–350. doi: 10.1007/s00421-009-1123-5. PubMed DOI

Yamamoto Y., Hoshikawa Y., Miyashita M. Effects of acute exposure to simulated altitude on heart rate variability during exercise. J. Appl. Physiol. 1996;81:1223–1229. doi: 10.1152/jappl.1996.81.3.1223. PubMed DOI

Buchheit M., Simon C., Piquard F., Ehrhart J., Brandenberger G. Effects of increased training load on vagal-related indexes of heart rate variability: A novel sleep approach. Am. J. Physiol. Heart Circ. Physiol. 2004;287:H2813–H2818. doi: 10.1152/ajpheart.00490.2004. PubMed DOI

Petrassi F.A., Hodkinson P.D., Walters P.L., Gaydos S.J. Hypoxic hypoxia at moderate altitudes: Review of the state of the science. Aviat. Space Environ. Med. 2012;83:975–984. doi: 10.3357/ASEM.3315.2012. PubMed DOI

Komiyama T., Katayama K., Sudo M., Ishida K., Higaki Y., Ando S. Cognitive function during exercise under severe hypoxia. Sci. Rep. 2017;7:10000. doi: 10.1038/s41598-017-10332-y. PubMed DOI PMC

Galvin H.M., Cooke K., Sumners D.P., Mileva K.N., Bowtell J.L. Repeated sprint training in normobaric hypoxia. Br. J. Sport. Med. 2013;47:i74–i79. doi: 10.1136/bjsports-2013-092826. PubMed DOI PMC

Tian Z., Kim B.-Y., Bae M.-J. A study on the effect of wearing masks on stress response. Memory. 2020;8:12. doi: 10.37624/IJERT/13.4.2020.807-813. DOI

Sandoval D.A., Matt K.S. Effects of the oral contraceptive pill cycle on physiological responses to hypoxic exercise. High Alt. Med. Biol. 2003;4:61–72. doi: 10.1089/152702903321488997. PubMed DOI

Laurent C.M., Green J.M., Bishop P.A., Sjökvist J., Schumacker R.E., Richardson M.T., Curtner-Smith M. Effect of gender on fatigue and recovery following maximal intensity repeated sprint performance. J. Sport. Med. Phys. Fit. 2010;50:243–253. PubMed

Laurent C.M., Vervaecke L.S., Kutz M.R., Green J.M. Sex-specific responses to self-paced, high-intensity interval training with variable recovery periods. J. Strength Cond. Res. 2014;28:920–927. doi: 10.1519/JSC.0b013e3182a1f574. PubMed DOI

Sandoval D.A., Matt K.S. Gender differences in the endocrine and metabolic responses to hypoxic exercise. J. Appl. Physiol. 2002;92:504–512. doi: 10.1152/japplphysiol.00526.2001. PubMed DOI

Esbjornsson-Liljedahl M., Bodin K., Jansson E. Smaller muscle ATP reduction in women than in men by repeated bouts of sprint exercise. J. Appl. Physiol. 2002;93:1075–1083. doi: 10.1152/japplphysiol.00732.1999. PubMed DOI

Storer T.W., Davis J.A., Caiozzo V.J. Accurate prediction of VO2max in cycle ergometry. Med. Sci. Sport. Exerc. 1990;22:704–712. doi: 10.1249/00005768-199010000-00024. PubMed DOI

Sims S.T., Ware L., Capodilupo E.R. Patterns of endogenous and exogeneous ovarian hormone modulation on recovery metrics across the menstrual cycle. BMJ Open Sport Exerc. Med. 2021;7:e001047. doi: 10.1136/bmjsem-2021-001047. PubMed DOI PMC

Sims S.T., Heather A.K. Myths and methodologies: Reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp. Physiol. 2018;103:1309–1317. doi: 10.1113/EP086797. PubMed DOI

Heffernan K.S., Kelly E.E., Collier S.R., Fernhall B. Cardiac autonomic modulation during recovery from acute endurance versus resistance exercise. Eur. J. Cardiovasc. Prev. Rehabil. 2006;13:80–86. doi: 10.1097/01.hjr.0000197470.74070.46. PubMed DOI

Peçanha T., Bartels R., Brito L.C., Paula-Ribeiro M., Oliveira R.S., Goldberger J.J. Methods of assessment of the post-exercise cardiac autonomic recovery: A methodological review. Int. J. Cardiol. 2017;227:795–802. doi: 10.1016/j.ijcard.2016.10.057. PubMed DOI

Karayigit R., Naderi A., Akca F., Cruz C.J.G.D., Sarshin A., Yasli B.C., Ersoz G., Kaviani M. Effects of Different Doses of Caffeinated Coffee on Muscular Endurance, Cognitive Performance, and Cardiac Autonomic Modulation in Caffeine Naive Female Athletes. Nutrients. 2020;13:2. doi: 10.3390/nu13010002. PubMed DOI PMC

Eriksen B.A., Eriksen C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974;16:143–149. doi: 10.3758/BF03203267. DOI

Cohen J. A power primer. Psych. Bull. 1992;112:155–159. doi: 10.1037/0033-2909.112.1.155. PubMed DOI

Brocherie F., Girard O., Faiss R., Millet G.P. Effects of repeated-sprint training in hypoxia on sea-level performance: A meta-analysis. Sport. Med. 2017;47:1651–1660. doi: 10.1007/s40279-017-0685-3. PubMed DOI

Girard O., Brocherie F., Millet G.P. Effects of altitude/hypoxia on single-and multiple- sprint performance: A comprehensive review. Sport. Med. 2017;47:1931–1949. doi: 10.1007/s40279-017-0733-z. PubMed DOI

Kon M., Ohiwa N., Honda A., Matsubayashi T., Ikeda T., Akimoto T., Suzuki T., Hirano Y., Rusell A.P. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol. Rep. 2015;3:e12267. doi: 10.14814/phy2.12267. PubMed DOI PMC

Ogawa T., Hayashi K., Ichinose M., Wada H., Nishiyasu T. Metabolic response during intermittent graded sprint running in moderate hypobaric hypoxia in competitive middle- distance runners. Eur. J. Appl. Physiol. 2007;99:39–46. doi: 10.1007/s00421-006-0315-5. PubMed DOI

Freese E.C., Gist N.H., Cureton K.J. Physiological responses to an acute bout of sprint interval cycling. J. Strength Cond. Res. 2013;27:2768–2773. doi: 10.1519/JSC.0b013e318281575c. PubMed DOI

Murphy M.M., Patton J.F., Frederick F.A. Comparative anaerobic power of men and women. Aviat. Space Environ. Med. 1986;57:636–641. PubMed

Magal M., Liette N.C., Crowley S.K., Hoffman J.R., Thomas K.S. Sex-based performance responses to an acute sprint interbal cycling training session in collegiate athletes. Res. Q. Exerc. Sport. 2021;92:469–476. doi: 10.1080/02701367.2020.1751026. PubMed DOI

Smith K.J., Billaut F. Tissue oxygenation in men and women during repeated-sprint exercise. Int. J. Sport. Physiol. Perform. 2012;7:59–67. doi: 10.1123/ijspp.7.1.59. PubMed DOI

Willis S.J., Alvarez L., Millet G.P., Borrani F. Changes in muscle and cerebral deoxygenation and perfusion during repeated sprints in hypoxia to exhaustion. Front. Physiol. 2017;8:846. doi: 10.3389/fphys.2017.00846. PubMed DOI PMC

Ochi G., Yamada Y., Hyodo K., Suwabe K., Fukuie T., Byun K., Dan I., Soya H. Neural basis for reduced executive performance with hypoxic exercise. Neuroimage. 2018;171:75–83. doi: 10.1016/j.neuroimage.2017.12.091. PubMed DOI

Povea C., Schmitt L., Brugniaux J., Nicolet G., Richalet J.-P., Fouillot J.-P. Effects of intermittent hypoxia on heart rate variability during rest and exercise. High Alt. Med. Biol. 2005;6:215–225. doi: 10.1089/ham.2005.6.215. PubMed DOI

Al Haddad H., Mendez-Villanueva A., Bourdon P.C., Buchheit M. Effect of acute hypoxia on post-exercise parasympathetic reactivation in healthy men. Front. Physiol. 2012;3:289. doi: 10.3389/fphys.2012.00289. PubMed DOI PMC

Aras D., Coskun B. The changes on the HRV after a Wingate anaerobic test in different simulated altitudes in healthy, physically-active adults. Acta Med. Mediterr. 2016;32:1683.

Botek M., Krejčí J., De Smet S., Gába A., McKune A.J. Heart rate variability and arterial oxygen saturation response during extreme normobaric hypoxia. Auton. Neurosci. 2015;190:40–45. doi: 10.1016/j.autneu.2015.04.001. PubMed DOI

Boss C.J., Mellor A., O’Hara J.P., Tsakirides C., Woods D.R. The effects of sex on cardiopulmonary responses to acute normobaric hypoxia. High Alt. Med. Biol. 2016;17:108–115. doi: 10.1089/ham.2015.0114. PubMed DOI

Burtscher M., Philadelphy M., Gatterer H., Burtscher J., Faulbaher M., Nachbauer W., Likar R. Physiological responses in humans acutely exposed to high altitude (3480 m): Minute ventilation and oxygenation are predictive for the development of acute mountain sickness. High Alt. Med. Biol. 2019;20:193–197. doi: 10.1089/ham.2018.0143. PubMed DOI

Morrison J., McLellan C., Minahan C. A clustered repeated-sprint running protocol for team-sport athletes performed in normobaric hypoxia. J. Sport. Sci. Med. 2015;14:857. PubMed PMC

Calbet J., Boushel R., Rådegran G., Søndergaard H., Wagner P.D., Saltin B. Determinants of maximal oxygen uptake in severe acute hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;284:R291–R303. doi: 10.1152/ajpregu.00155.2002. PubMed DOI

Goodall S., Ross E.Z., Romer L.M. Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions. J. Appl. Physiol. 2010;109:1842–1851. doi: 10.1152/japplphysiol.00458.2010. PubMed DOI

Faiss R., Rapillard A. Repeated Sprint Training in Hypoxia: Case Report of Performance Benefits in a Professional Cyclist. Front. Sport. Act. Living. 2020;2:35. doi: 10.3389/fspor.2020.00035. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...