• Je něco špatně v tomto záznamu ?

Cross-species analysis of genetically engineered mouse models of MAPK-driven colorectal cancer identifies hallmarks of the human disease

PJ. Belmont, E. Budinska, P. Jiang, MJ. Sinnamon, E. Coffee, J. Roper, T. Xie, PA. Rejto, S. Derkits, OJ. Sansom, M. Delorenzi, S. Tejpar, KE. Hung, ES. Martin,

. 2014 ; 7 (6) : 613-23.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15014381

Effective treatment options for advanced colorectal cancer (CRC) are limited, survival rates are poor and this disease continues to be a leading cause of cancer-related deaths worldwide. Despite being a highly heterogeneous disease, a large subset of individuals with sporadic CRC typically harbor relatively few established 'driver' lesions. Here, we describe a collection of genetically engineered mouse models (GEMMs) of sporadic CRC that combine lesions frequently altered in human patients, including well-characterized tumor suppressors and activators of MAPK signaling. Primary tumors from these models were profiled, and individual GEMM tumors segregated into groups based on their genotypes. Unique allelic and genotypic expression signatures were generated from these GEMMs and applied to clinically annotated human CRC patient samples. We provide evidence that a Kras signature derived from these GEMMs is capable of distinguishing human tumors harboring KRAS mutation, and tracks with poor prognosis in two independent human patient cohorts. Furthermore, the analysis of a panel of human CRC cell lines suggests that high expression of the GEMM Kras signature correlates with sensitivity to targeted pathway inhibitors. Together, these findings implicate GEMMs as powerful preclinical tools with the capacity to recapitulate relevant human disease biology, and support the use of genetic signatures generated in these models to facilitate future drug discovery and validation efforts.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15014381
003      
CZ-PrNML
005      
20150424114100.0
007      
ta
008      
150420s2014 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1242/dmm.013904 $2 doi
035    __
$a (PubMed)24742783
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Belmont, Peter J $u Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA 92121, USA.
245    10
$a Cross-species analysis of genetically engineered mouse models of MAPK-driven colorectal cancer identifies hallmarks of the human disease / $c PJ. Belmont, E. Budinska, P. Jiang, MJ. Sinnamon, E. Coffee, J. Roper, T. Xie, PA. Rejto, S. Derkits, OJ. Sansom, M. Delorenzi, S. Tejpar, KE. Hung, ES. Martin,
520    9_
$a Effective treatment options for advanced colorectal cancer (CRC) are limited, survival rates are poor and this disease continues to be a leading cause of cancer-related deaths worldwide. Despite being a highly heterogeneous disease, a large subset of individuals with sporadic CRC typically harbor relatively few established 'driver' lesions. Here, we describe a collection of genetically engineered mouse models (GEMMs) of sporadic CRC that combine lesions frequently altered in human patients, including well-characterized tumor suppressors and activators of MAPK signaling. Primary tumors from these models were profiled, and individual GEMM tumors segregated into groups based on their genotypes. Unique allelic and genotypic expression signatures were generated from these GEMMs and applied to clinically annotated human CRC patient samples. We provide evidence that a Kras signature derived from these GEMMs is capable of distinguishing human tumors harboring KRAS mutation, and tracks with poor prognosis in two independent human patient cohorts. Furthermore, the analysis of a panel of human CRC cell lines suggests that high expression of the GEMM Kras signature correlates with sensitivity to targeted pathway inhibitors. Together, these findings implicate GEMMs as powerful preclinical tools with the capacity to recapitulate relevant human disease biology, and support the use of genetic signatures generated in these models to facilitate future drug discovery and validation efforts.
650    _2
$a alely $7 D000483
650    _2
$a zvířata $7 D000818
650    _2
$a kolorektální nádory $x enzymologie $x genetika $x patologie $7 D015179
650    _2
$a modely nemocí na zvířatech $7 D004195
650    _2
$a geny ras $7 D011905
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    _2
$a mitogenem aktivované proteinkinasy $x metabolismus $7 D020928
650    _2
$a protoonkogenní proteiny B-raf $x genetika $7 D048493
650    _2
$a druhová specificita $7 D013045
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Budinska, Eva $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic. Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
700    1_
$a Jiang, Ping $u Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA 92121, USA.
700    1_
$a Sinnamon, Mark J $u Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA.
700    1_
$a Coffee, Erin $u Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA.
700    1_
$a Roper, Jatin $u Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA.
700    1_
$a Xie, Tao $u Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA 92121, USA.
700    1_
$a Rejto, Paul A $u Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA 92121, USA.
700    1_
$a Derkits, Sahra $u The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK.
700    1_
$a Sansom, Owen J $u The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK.
700    1_
$a Delorenzi, Mauro $u Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
700    1_
$a Tejpar, Sabine $u University Hospital Gasthuisberg, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
700    1_
$a Hung, Kenneth E $u Pfizer Biotherapeutics Clinical Research, Cambridge, 02140 MA, USA.
700    1_
$a Martin, Eric S $u Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA 92121, USA. esmartin.phd@gmail.com.
773    0_
$w MED00173721 $t Disease models & mechanisms $x 1754-8411 $g Roč. 7, č. 6 (2014), s. 613-23
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24742783 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150420 $b ABA008
991    __
$a 20150424114401 $b ABA008
999    __
$a ok $b bmc $g 1071962 $s 897259
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 7 $c 6 $d 613-23 $i 1754-8411 $m Disease models & mechanisms $n Dis Model Mech $x MED00173721
LZP    __
$a Pubmed-20150420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...