-
Je něco špatně v tomto záznamu ?
Identification of GH10 xylanases in strains 2 and Mz5 of Pseudobutyrivibrio xylanivorans
DJ. Grilli, J. Kopečný, J. Mrázek, R. Marinšek-Logar, S. Paez Lama, MS. Escudero, GN. Arenas,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- bachor mikrobiologie MeSH
- Bacteria klasifikace enzymologie genetika izolace a purifikace MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- endo-1,4-beta-xylanasy chemie genetika metabolismus MeSH
- fylogeneze MeSH
- kinetika MeSH
- kozy MeSH
- xylany metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Genes encoding glycosyl hydrolase family 11 (GH11) xylanases and xylanases have been identified from Pseudobutyrivibrio xylanivorans. In contrast, little is known about the diversity and distribution of the GH10 xylanase in strains of P. xylanivorans. Xylanase and associated activities of P. xylanivorans have been characterized in detail in the type strain, Mz5. The aim of the present study was to identify GH10 xylanase genes in strains 2 and Mz5 of P. xylanivorans. In addition, we evaluated degradation and utilization of xylan by P. xylanivorans 2 isolated from rumen of Creole goats. After a 12-h culture, P. xylanivorans 2 was able to utilize up to 53% of the total pentose content present in birchwood xylan (BWX) and to utilize up to 62% of a ethanol-acetic acid-soluble fraction prepared from BWX. This is the first report describing the presence of GH10 xylanase-encoding genes in P. xylanivorans. Strain 2 and Mz5 contained xylanases which were related to GH10 xylanase of Butyrivibrio sp. Identifying xylanase-encoding genes and activity of these enzymes are a step toward understanding possible functional role of P. xylanivorans in the rumen ecosystem and contribute to providing an improved choice of enzymes for improving fiber digestion in ruminant animals, agricultural biomass utilization for biofuel production, and other industries.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15020221
- 003
- CZ-PrNML
- 005
- 20150616124928.0
- 007
- ta
- 008
- 150616s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12223-014-0329-z $2 doi
- 035 __
- $a (PubMed)24942109
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Grilli, Diego J $u Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, 5519, Mendoza, Argentina, diegogrilli@yahoo.com.ar.
- 245 10
- $a Identification of GH10 xylanases in strains 2 and Mz5 of Pseudobutyrivibrio xylanivorans / $c DJ. Grilli, J. Kopečný, J. Mrázek, R. Marinšek-Logar, S. Paez Lama, MS. Escudero, GN. Arenas,
- 520 9_
- $a Genes encoding glycosyl hydrolase family 11 (GH11) xylanases and xylanases have been identified from Pseudobutyrivibrio xylanivorans. In contrast, little is known about the diversity and distribution of the GH10 xylanase in strains of P. xylanivorans. Xylanase and associated activities of P. xylanivorans have been characterized in detail in the type strain, Mz5. The aim of the present study was to identify GH10 xylanase genes in strains 2 and Mz5 of P. xylanivorans. In addition, we evaluated degradation and utilization of xylan by P. xylanivorans 2 isolated from rumen of Creole goats. After a 12-h culture, P. xylanivorans 2 was able to utilize up to 53% of the total pentose content present in birchwood xylan (BWX) and to utilize up to 62% of a ethanol-acetic acid-soluble fraction prepared from BWX. This is the first report describing the presence of GH10 xylanase-encoding genes in P. xylanivorans. Strain 2 and Mz5 contained xylanases which were related to GH10 xylanase of Butyrivibrio sp. Identifying xylanase-encoding genes and activity of these enzymes are a step toward understanding possible functional role of P. xylanivorans in the rumen ecosystem and contribute to providing an improved choice of enzymes for improving fiber digestion in ruminant animals, agricultural biomass utilization for biofuel production, and other industries.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a Bacteria $x klasifikace $x enzymologie $x genetika $x izolace a purifikace $7 D001419
- 650 _2
- $a bakteriální proteiny $x chemie $x genetika $x metabolismus $7 D001426
- 650 _2
- $a endo-1,4-beta-xylanasy $x chemie $x genetika $x metabolismus $7 D043364
- 650 _2
- $a kozy $7 D006041
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a bachor $x mikrobiologie $7 D012417
- 650 _2
- $a xylany $x metabolismus $7 D014990
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kopečný, Jan
- 700 1_
- $a Mrázek, Jakub
- 700 1_
- $a Marinšek-Logar, Romana
- 700 1_
- $a Paez Lama, Sebastián
- 700 1_
- $a Escudero, Miguel Sosa
- 700 1_
- $a Arenas, Graciela N $7 gn_A_00008225
- 773 0_
- $w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 59, č. 6 (2014), s. 507-14
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24942109 $y Pubmed
- 910 __
- $a ABA008 $b online $c sign $y a $z 0
- 990 __
- $a 20150616 $b ABA008
- 991 __
- $a 20150616125324 $b ABA008
- 999 __
- $a ok $b bmc $g 1080557 $s 903183
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 59 $c 6 $d 507-14 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
- LZP __
- $a Pubmed-20150616