-
Something wrong with this record ?
An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces
M. Vilimek,
Language English Country Poland
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1999
Medline Complete (EBSCOhost)
from 2007-01-01
ROAD: Directory of Open Access Scholarly Resources
from 1999
PubMed
25307446
Knihovny.cz E-resources
- MeSH
- Algorithms * MeSH
- Models, Biological * MeSH
- Muscle, Skeletal physiology MeSH
- Humans MeSH
- Elbow Joint physiology MeSH
- Stress, Mechanical MeSH
- Neural Networks, Computer * MeSH
- Computer Simulation MeSH
- Movement physiology MeSH
- Reproducibility of Results MeSH
- Pattern Recognition, Automated methods MeSH
- Range of Motion, Articular MeSH
- Sensitivity and Specificity MeSH
- Muscle Contraction physiology MeSH
- Muscle Strength physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15022964
- 003
- CZ-PrNML
- 005
- 20150722123532.0
- 007
- ta
- 008
- 150709s2014 pl f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)25307446
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a pl
- 100 1_
- $a Vilimek, Miloslav $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague, Czech Republic.
- 245 13
- $a An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces / $c M. Vilimek,
- 520 9_
- $a This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a loketní kloub $x fyziologie $7 D004551
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a pohyb $x fyziologie $7 D009068
- 650 _2
- $a svalová kontrakce $x fyziologie $7 D009119
- 650 _2
- $a svalová síla $x fyziologie $7 D053580
- 650 _2
- $a kosterní svaly $x fyziologie $7 D018482
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a rozsah kloubních pohybů $7 D016059
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a mechanický stres $7 D013314
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 773 0_
- $w MED00172317 $t Acta of bioengineering and biomechanics Wrocław University of Technology $x 1509-409X $g Roč. 16, č. 3 (2014), s. 119-27
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25307446 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150722123609 $b ABA008
- 999 __
- $a ok $b bmc $g 1083303 $s 905957
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 16 $c 3 $d 119-27 $i 1509-409X $m Acta of Bioengineering and Biomechanics $n Acta Bioeng Biomech $x MED00172317
- LZP __
- $a Pubmed-20150709