Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces

M. Vilimek,

. 2014 ; 16 (3) : 119-27.

Language English Country Poland

Document type Journal Article, Research Support, Non-U.S. Gov't

This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.

000      
00000naa a2200000 a 4500
001      
bmc15022964
003      
CZ-PrNML
005      
20150722123532.0
007      
ta
008      
150709s2014 pl f 000 0|eng||
009      
AR
035    __
$a (PubMed)25307446
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a pl
100    1_
$a Vilimek, Miloslav $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague, Czech Republic.
245    13
$a An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces / $c M. Vilimek,
520    9_
$a This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.
650    12
$a algoritmy $7 D000465
650    _2
$a počítačová simulace $7 D003198
650    _2
$a loketní kloub $x fyziologie $7 D004551
650    _2
$a lidé $7 D006801
650    12
$a biologické modely $7 D008954
650    _2
$a pohyb $x fyziologie $7 D009068
650    _2
$a svalová kontrakce $x fyziologie $7 D009119
650    _2
$a svalová síla $x fyziologie $7 D053580
650    _2
$a kosterní svaly $x fyziologie $7 D018482
650    12
$a neuronové sítě $7 D016571
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a rozsah kloubních pohybů $7 D016059
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a mechanický stres $7 D013314
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
773    0_
$w MED00172317 $t Acta of bioengineering and biomechanics Wrocław University of Technology $x 1509-409X $g Roč. 16, č. 3 (2014), s. 119-27
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25307446 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20150722123609 $b ABA008
999    __
$a ok $b bmc $g 1083303 $s 905957
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 16 $c 3 $d 119-27 $i 1509-409X $m Acta of Bioengineering and Biomechanics $n Acta Bioeng Biomech $x MED00172317
LZP    __
$a Pubmed-20150709

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...