-
Je něco špatně v tomto záznamu ?
Thickness related textural properties of retinal nerve fiber layer in color fundus images
J. Odstrcilik, R. Kolar, RP. Tornow, J. Jan, A. Budai, M. Mayer, M. Vodakova, R. Laemmer, M. Lamos, Z. Kuna, J. Gazarek, T. Kubena, P. Cernosek, M. Ronzhina,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- barva * MeSH
- discus nervi optici patologie MeSH
- fundus oculi MeSH
- glaukom patologie MeSH
- lidé MeSH
- Markovovy řetězce * MeSH
- nervová vlákna patologie MeSH
- normální rozdělení MeSH
- optická koherentní tomografie MeSH
- retinální gangliové buňky patologie MeSH
- vylepšení obrazu metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Images of ocular fundus are routinely utilized in ophthalmology. Since an examination using fundus camera is relatively fast and cheap procedure, it can be used as a proper diagnostic tool for screening of retinal diseases such as the glaucoma. One of the glaucoma symptoms is progressive atrophy of the retinal nerve fiber layer (RNFL) resulting in variations of the RNFL thickness. Here, we introduce a novel approach to capture these variations using computer-aided analysis of the RNFL textural appearance in standard and easily available color fundus images. The proposed method uses the features based on Gaussian Markov random fields and local binary patterns, together with various regression models for prediction of the RNFL thickness. The approach allows description of the changes in RNFL texture, directly reflecting variations in the RNFL thickness. Evaluation of the method is carried out on 16 normal ("healthy") and 8 glaucomatous eyes. We achieved significant correlation (normals: ρ=0.72±0.14; p≪0.05, glaucomatous: ρ=0.58±0.10; p≪0.05) between values of the model predicted output and the RNFL thickness measured by optical coherence tomography, which is currently regarded as a standard glaucoma assessment device. The evaluation thus revealed good applicability of the proposed approach to measure possible RNFL thinning.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023348
- 003
- CZ-PrNML
- 005
- 20150731103243.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.compmedimag.2014.05.005 $2 doi
- 035 __
- $a (PubMed)24906911
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Odstrcilik, Jan $u St. Anne Faculty Hospital Brno - International Clinical Research Center (ICRC), Pekarska 53, 65691 Brno, Czech Republic; Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic. Electronic address: odstrcilik@feec.vutbr.cz.
- 245 10
- $a Thickness related textural properties of retinal nerve fiber layer in color fundus images / $c J. Odstrcilik, R. Kolar, RP. Tornow, J. Jan, A. Budai, M. Mayer, M. Vodakova, R. Laemmer, M. Lamos, Z. Kuna, J. Gazarek, T. Kubena, P. Cernosek, M. Ronzhina,
- 520 9_
- $a Images of ocular fundus are routinely utilized in ophthalmology. Since an examination using fundus camera is relatively fast and cheap procedure, it can be used as a proper diagnostic tool for screening of retinal diseases such as the glaucoma. One of the glaucoma symptoms is progressive atrophy of the retinal nerve fiber layer (RNFL) resulting in variations of the RNFL thickness. Here, we introduce a novel approach to capture these variations using computer-aided analysis of the RNFL textural appearance in standard and easily available color fundus images. The proposed method uses the features based on Gaussian Markov random fields and local binary patterns, together with various regression models for prediction of the RNFL thickness. The approach allows description of the changes in RNFL texture, directly reflecting variations in the RNFL thickness. Evaluation of the method is carried out on 16 normal ("healthy") and 8 glaucomatous eyes. We achieved significant correlation (normals: ρ=0.72±0.14; p≪0.05, glaucomatous: ρ=0.58±0.10; p≪0.05) between values of the model predicted output and the RNFL thickness measured by optical coherence tomography, which is currently regarded as a standard glaucoma assessment device. The evaluation thus revealed good applicability of the proposed approach to measure possible RNFL thinning.
- 650 12
- $a barva $7 D003116
- 650 _2
- $a fundus oculi $7 D005654
- 650 _2
- $a glaukom $x patologie $7 D005901
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a vylepšení obrazu $x metody $7 D007089
- 650 12
- $a Markovovy řetězce $7 D008390
- 650 _2
- $a nervová vlákna $x patologie $7 D009412
- 650 _2
- $a normální rozdělení $7 D016011
- 650 _2
- $a discus nervi optici $x patologie $7 D009898
- 650 _2
- $a retinální gangliové buňky $x patologie $7 D012165
- 650 _2
- $a optická koherentní tomografie $7 D041623
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kolar, Radim $u St. Anne Faculty Hospital Brno - International Clinical Research Center (ICRC), Pekarska 53, 65691 Brno, Czech Republic; Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic.
- 700 1_
- $a Tornow, Ralf-Peter $u University of Erlangen - Nuremberg, Department of Ophthalmology, Schwabachanlage 6, 91054 Erlangen, Germany.
- 700 1_
- $a Jan, Jiri $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic.
- 700 1_
- $a Budai, Attila $u Pattern Recognition Lab and Erlangen Graduate School of Advanced Optical Technologies, University of Erlangen - Nuremberg, Martensstrase 3, 91058 Erlangen, Germany.
- 700 1_
- $a Mayer, Markus $u Pattern Recognition Lab and Erlangen Graduate School of Advanced Optical Technologies, University of Erlangen - Nuremberg, Martensstrase 3, 91058 Erlangen, Germany.
- 700 1_
- $a Vodakova, Martina $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic.
- 700 1_
- $a Laemmer, Robert $u University of Erlangen - Nuremberg, Department of Ophthalmology, Schwabachanlage 6, 91054 Erlangen, Germany.
- 700 1_
- $a Lamos, Martin $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic.
- 700 1_
- $a Kuna, Zdenek $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic.
- 700 1_
- $a Gazarek, Jiri $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic.
- 700 1_
- $a Kubena, Tomas $u Ophthalmology Clinic M.D. Tomas Kubena, U zimniho stadionu 1759, 760 00 Zlin, Czech Republic.
- 700 1_
- $a Cernosek, Pavel $u Ophthalmology Clinic M.D. Tomas Kubena, U zimniho stadionu 1759, 760 00 Zlin, Czech Republic.
- 700 1_
- $a Ronzhina, Marina $u St. Anne Faculty Hospital Brno - International Clinical Research Center (ICRC), Pekarska 53, 65691 Brno, Czech Republic; Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic.
- 773 0_
- $w MED00001216 $t Computerized medical imaging and graphics the official journal of the Computerized Medical Imaging Society $x 1879-0771 $g Roč. 38, č. 6 (2014), s. 508-16
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24906911 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150731103332 $b ABA008
- 999 __
- $a ok $b bmc $g 1083686 $s 906341
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 38 $c 6 $d 508-16 $i 1879-0771 $m Computerized medical imaging and graphics $n Comput Med Imaging Graph $x MED00001216
- LZP __
- $a Pubmed-20150709