-
Je něco špatně v tomto záznamu ?
Comparing fixed and variable-width Gaussian networks
V. Kůrková, PC. Kainen,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy * MeSH
- neuronové sítě * MeSH
- normální rozdělení MeSH
- počítačová simulace * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023356
- 003
- CZ-PrNML
- 005
- 20150728094421.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neunet.2014.05.005 $2 doi
- 035 __
- $a (PubMed)24892273
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kůrková, Věra $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic. Electronic address: vera@cs.cas.cz.
- 245 10
- $a Comparing fixed and variable-width Gaussian networks / $c V. Kůrková, PC. Kainen,
- 520 9_
- $a The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described.
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a počítačová simulace $7 D003198
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a normální rozdělení $7 D016011
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kainen, Paul C $u Department of Mathematics and Statistics, Georgetown University, 3700 Reservoir Rd., N.W., Washington, DC 20057, USA. Electronic address: kainen@georgetown.edu.
- 773 0_
- $w MED00011811 $t Neural networks the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 57, č. - (2014), s. 23-8
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24892273 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150728094506 $b ABA008
- 999 __
- $a ok $b bmc $g 1083694 $s 906349
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 57 $c - $d 23-8 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a Pubmed-20150709