• Je něco špatně v tomto záznamu ?

Comparing fixed and variable-width Gaussian networks

V. Kůrková, PC. Kainen,

. 2014 ; 57 (-) : 23-8.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15023356

The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15023356
003      
CZ-PrNML
005      
20150728094421.0
007      
ta
008      
150709s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neunet.2014.05.005 $2 doi
035    __
$a (PubMed)24892273
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kůrková, Věra $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic. Electronic address: vera@cs.cas.cz.
245    10
$a Comparing fixed and variable-width Gaussian networks / $c V. Kůrková, PC. Kainen,
520    9_
$a The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described.
650    12
$a algoritmy $7 D000465
650    12
$a počítačová simulace $7 D003198
650    12
$a neuronové sítě $7 D016571
650    _2
$a normální rozdělení $7 D016011
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kainen, Paul C $u Department of Mathematics and Statistics, Georgetown University, 3700 Reservoir Rd., N.W., Washington, DC 20057, USA. Electronic address: kainen@georgetown.edu.
773    0_
$w MED00011811 $t Neural networks the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 57, č. - (2014), s. 23-8
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24892273 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20150728094506 $b ABA008
999    __
$a ok $b bmc $g 1083694 $s 906349
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 57 $c - $d 23-8 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
LZP    __
$a Pubmed-20150709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...