-
Something wrong with this record ?
Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment
L. Nejdl, J. Kudr, K. Cihalova, D. Chudobova, M. Zurek, L. Zalud, L. Kopecny, F. Burian, B. Ruttkay-Nedecky, S. Krizkova, M. Konecna, D. Hynek, P. Kopel, J. Prasek, V. Adam, R. Kizek,
Language English Country Germany
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Alkaline Phosphatase metabolism MeSH
- Equipment Design MeSH
- Electrochemical Techniques instrumentation MeSH
- Escherichia coli enzymology isolation & purification MeSH
- Limit of Detection MeSH
- Magnetite Nanoparticles chemistry MeSH
- Environmental Microbiology * MeSH
- Microfluidic Analytical Techniques instrumentation MeSH
- Naphthols isolation & purification MeSH
- Robotics instrumentation MeSH
- Staphylococcus aureus enzymology isolation & purification MeSH
- Remote Sensing Technology instrumentation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Remote-controlled robotic systems are being used for analysis of various types of analytes in hostile environment including those called extraterrestrial. The aim of our study was to develop a remote-controlled robotic platform (ORPHEUS-HOPE) for bacterial detection. For the platform ORPHEUS-HOPE a 3D printed flow chip was designed and created with a culture chamber with volume 600 μL. The flow rate was optimized to 500 μL/min. The chip was tested primarily for detection of 1-naphthol by differential pulse voltammetry with detection limit (S/N = 3) as 20 nM. Further, the way how to capture bacteria was optimized. To capture bacterial cells (Staphylococcus aureus), maghemite nanoparticles (1 mg/mL) were prepared and modified with collagen, glucose, graphene, gold, hyaluronic acid, and graphene with gold or graphene with glucose (20 mg/mL). The most up to 50% of the bacteria were captured by graphene nanoparticles modified with glucose. The detection limit of the whole assay, which included capturing of bacteria and their detection under remote control operation, was estimated as 30 bacteria per μL.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023536
- 003
- CZ-PrNML
- 005
- 20150730100400.0
- 007
- ta
- 008
- 150709s2014 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/elps.201300576 $2 doi
- 035 __
- $a (PubMed)24634313
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Nejdl, Lukas $u Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Czech Republic.
- 245 10
- $a Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment / $c L. Nejdl, J. Kudr, K. Cihalova, D. Chudobova, M. Zurek, L. Zalud, L. Kopecny, F. Burian, B. Ruttkay-Nedecky, S. Krizkova, M. Konecna, D. Hynek, P. Kopel, J. Prasek, V. Adam, R. Kizek,
- 520 9_
- $a Remote-controlled robotic systems are being used for analysis of various types of analytes in hostile environment including those called extraterrestrial. The aim of our study was to develop a remote-controlled robotic platform (ORPHEUS-HOPE) for bacterial detection. For the platform ORPHEUS-HOPE a 3D printed flow chip was designed and created with a culture chamber with volume 600 μL. The flow rate was optimized to 500 μL/min. The chip was tested primarily for detection of 1-naphthol by differential pulse voltammetry with detection limit (S/N = 3) as 20 nM. Further, the way how to capture bacteria was optimized. To capture bacterial cells (Staphylococcus aureus), maghemite nanoparticles (1 mg/mL) were prepared and modified with collagen, glucose, graphene, gold, hyaluronic acid, and graphene with gold or graphene with glucose (20 mg/mL). The most up to 50% of the bacteria were captured by graphene nanoparticles modified with glucose. The detection limit of the whole assay, which included capturing of bacteria and their detection under remote control operation, was estimated as 30 bacteria per μL.
- 650 _2
- $a alkalická fosfatasa $x metabolismus $7 D000469
- 650 _2
- $a elektrochemické techniky $x přístrojové vybavení $7 D055664
- 650 12
- $a mikrobiologie životního prostředí $7 D004783
- 650 _2
- $a design vybavení $7 D004867
- 650 _2
- $a Escherichia coli $x enzymologie $x izolace a purifikace $7 D004926
- 650 _2
- $a limita detekce $7 D057230
- 650 _2
- $a magnetické nanočástice $x chemie $7 D058185
- 650 _2
- $a mikrofluidní analytické techniky $x přístrojové vybavení $7 D046210
- 650 _2
- $a naftoly $x izolace a purifikace $7 D009284
- 650 _2
- $a technologie dálkového snímání $x přístrojové vybavení $7 D058998
- 650 _2
- $a robotika $x přístrojové vybavení $7 D012371
- 650 _2
- $a Staphylococcus aureus $x enzymologie $x izolace a purifikace $7 D013211
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kudr, Jiri
- 700 1_
- $a Cihalova, Kristyna
- 700 1_
- $a Chudobova, Dagmar
- 700 1_
- $a Zurek, Michal
- 700 1_
- $a Zalud, Ludek
- 700 1_
- $a Kopecny, Lukas
- 700 1_
- $a Burian, Frantisek
- 700 1_
- $a Ruttkay-Nedecky, Branislav
- 700 1_
- $a Krizkova, Sona
- 700 1_
- $a Konecna, Marie
- 700 1_
- $a Hynek, David
- 700 1_
- $a Kopel, Pavel
- 700 1_
- $a Prasek, Jan
- 700 1_
- $a Adam, Vojtěch $7 xx0064599
- 700 1_
- $a Kizek, Rene
- 773 0_
- $w MED00001508 $t Electrophoresis $x 1522-2683 $g Roč. 35, č. 16 (2014), s. 2333-45
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24634313 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150730100448 $b ABA008
- 999 __
- $a ok $b bmc $g 1083873 $s 906529
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 35 $c 16 $d 2333-45 $i 1522-2683 $m Electrophoresis $n Electrophoresis $x MED00001508
- LZP __
- $a Pubmed-20150709