Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Using geovisual analytics in Google Earth to understand disease distribution: a case study of campylobacteriosis in the Czech Republic (2008-2012)

L. Marek, P. Tuček, V. Pászto,

. 2015 ; 14 (-) : 7. [pub] 20150128

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031484

BACKGROUND: Visual analytics aims to connect the processing power of information technologies and the user's ability of logical thinking and reasoning through the complex visual interaction. Moreover, the most of the data contain the spatial component. Therefore, the need for geovisual tools and methods arises. Either one can develop own system but the dissemination of findings and its usability might be problematic or the widespread and well-known platform can be utilized. The aim of this paper is to prove the applicability of Google Earth™ software as a tool for geovisual analytics that helps to understand the spatio-temporal patterns of the disease distribution. METHODS: We combined the complex joint spatio-temporal analysis with comprehensive visualisation. We analysed the spatio-temporal distribution of the campylobacteriosis in the Czech Republic between 2008 and 2012. We applied three main approaches in the study: (1) the geovisual analytics of the surveillance data that were visualised in the form of bubble chart; (2) the geovisual analytics of the disease's weekly incidence surfaces computed by spatio-temporal kriging and (3) the spatio-temporal scan statistics that was employed in order to identify high or low rates clusters of affected municipalities. The final data are stored in Keyhole Markup Language files and visualised in Google Earth™ in order to apply geovisual analytics. RESULTS: Using geovisual analytics we were able to display and retrieve information from complex dataset efficiently. Instead of searching for patterns in a series of static maps or using numerical statistics, we created the set of interactive visualisations in order to explore and communicate results of analyses to the wider audience. The results of the geovisual analytics identified periodical patterns in the behaviour of the disease as well as fourteen spatio-temporal clusters of increased relative risk. CONCLUSIONS: We prove that Google Earth™ software is a usable tool for the geovisual analysis of the disease distribution. Google Earth™ has many indisputable advantages (widespread, freely available, intuitive interface, space-time visualisation capabilities and animations, communication of results), nevertheless it is still needed to combine it with pre-processing tools that prepare the data into a form suitable for the geovisual analytics itself.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031484
003      
CZ-PrNML
005      
20151013100401.0
007      
ta
008      
151005s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/1476-072X-14-7 $2 doi
035    __
$a (PubMed)25628063
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Marek, Lukáš $u Department of Geoinformatics, Faculty of Science, Palacky University in Olomouc, 17.listopadu 50, 77146, Olomouc, Czech Republic. lukas.marek@upol.cz.
245    10
$a Using geovisual analytics in Google Earth to understand disease distribution: a case study of campylobacteriosis in the Czech Republic (2008-2012) / $c L. Marek, P. Tuček, V. Pászto,
520    9_
$a BACKGROUND: Visual analytics aims to connect the processing power of information technologies and the user's ability of logical thinking and reasoning through the complex visual interaction. Moreover, the most of the data contain the spatial component. Therefore, the need for geovisual tools and methods arises. Either one can develop own system but the dissemination of findings and its usability might be problematic or the widespread and well-known platform can be utilized. The aim of this paper is to prove the applicability of Google Earth™ software as a tool for geovisual analytics that helps to understand the spatio-temporal patterns of the disease distribution. METHODS: We combined the complex joint spatio-temporal analysis with comprehensive visualisation. We analysed the spatio-temporal distribution of the campylobacteriosis in the Czech Republic between 2008 and 2012. We applied three main approaches in the study: (1) the geovisual analytics of the surveillance data that were visualised in the form of bubble chart; (2) the geovisual analytics of the disease's weekly incidence surfaces computed by spatio-temporal kriging and (3) the spatio-temporal scan statistics that was employed in order to identify high or low rates clusters of affected municipalities. The final data are stored in Keyhole Markup Language files and visualised in Google Earth™ in order to apply geovisual analytics. RESULTS: Using geovisual analytics we were able to display and retrieve information from complex dataset efficiently. Instead of searching for patterns in a series of static maps or using numerical statistics, we created the set of interactive visualisations in order to explore and communicate results of analyses to the wider audience. The results of the geovisual analytics identified periodical patterns in the behaviour of the disease as well as fourteen spatio-temporal clusters of increased relative risk. CONCLUSIONS: We prove that Google Earth™ software is a usable tool for the geovisual analysis of the disease distribution. Google Earth™ has many indisputable advantages (widespread, freely available, intuitive interface, space-time visualisation capabilities and animations, communication of results), nevertheless it is still needed to combine it with pre-processing tools that prepare the data into a form suitable for the geovisual analytics itself.
650    _2
$a mladiství $7 D000293
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a kampylobakterové infekce $x diagnóza $x epidemiologie $7 D002169
650    _2
$a dítě $7 D002648
650    _2
$a předškolní dítě $7 D002675
650    12
$a pochopení $7 D032882
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a geografické informační systémy $x statistika a číselné údaje $7 D040362
650    12
$a geografická kartografie $7 D062305
650    _2
$a lidé $7 D006801
650    _2
$a kojenec $7 D007223
650    _2
$a novorozenec $7 D007231
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    12
$a časoprostorová analýza $7 D062211
650    _2
$a mladý dospělý $7 D055815
651    _2
$a Česká republika $x epidemiologie $7 D018153
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Tuček, Pavel $u Department of Geoinformatics, Faculty of Science, Palacky University in Olomouc, 17.listopadu 50, 77146, Olomouc, Czech Republic. pavel.tucek@upol.cz.
700    1_
$a Pászto, Vít $u Department of Geoinformatics, Faculty of Science, Palacky University in Olomouc, 17.listopadu 50, 77146, Olomouc, Czech Republic. vit.paszto@gmail.com.
773    0_
$w MED00008229 $t International journal of health geographics $x 1476-072X $g Roč. 14, č. - (2015), s. 7
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25628063 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151013100550 $b ABA008
999    __
$a ok $b bmc $g 1092360 $s 914610
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 14 $c - $d 7 $e 20150128 $i 1476-072X $m International journal of health geographics $n Int J Health Geogr $x MED00008229
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...