-
Je něco špatně v tomto záznamu ?
Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA
AS. Tan, JW. Baty, LF. Dong, A. Bezawork-Geleta, B. Endaya, J. Goodwin, M. Bajzikova, J. Kovarova, M. Peterka, B. Yan, EA. Pesdar, M. Sobol, A. Filimonenko, S. Stuart, M. Vondrusova, K. Kluckova, K. Sachaphibulkij, J. Rohlena, P. Hozak, J....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Cell Press Free Archives
od 2005-01-01 do Před 1 rokem
Free Medical Journals
od 2005 do Před 1 rokem
- MeSH
- citrátsynthasa metabolismus MeSH
- elektronový transportní řetězec metabolismus MeSH
- energetický metabolismus MeSH
- homologní transplantace MeSH
- melanom experimentální patologie MeSH
- messenger RNA metabolismus MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondrie genetika metabolismus ultrastruktura MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši inbrední NOD MeSH
- myši SCID MeSH
- myši MeSH
- NADH-dehydrogenasa genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory plic patologie sekundární MeSH
- proliferace buněk MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.
Institute of Biotechnology Academy of Sciences of the Czech Republic Prague 142 20 Czech Republic
Malaghan Institute of Medical Research P O Box 7060 Wellington 6242 New Zealand
School of Medical Science Griffith University Southport QLD 4222 Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031527
- 003
- CZ-PrNML
- 005
- 20151008130445.0
- 007
- ta
- 008
- 151005s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cmet.2014.12.003 $2 doi
- 035 __
- $a (PubMed)25565207
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Tan, An S $u Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.
- 245 10
- $a Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA / $c AS. Tan, JW. Baty, LF. Dong, A. Bezawork-Geleta, B. Endaya, J. Goodwin, M. Bajzikova, J. Kovarova, M. Peterka, B. Yan, EA. Pesdar, M. Sobol, A. Filimonenko, S. Stuart, M. Vondrusova, K. Kluckova, K. Sachaphibulkij, J. Rohlena, P. Hozak, J. Truksa, D. Eccles, LM. Haupt, LR. Griffiths, J. Neuzil, MV. Berridge,
- 520 9_
- $a We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a proliferace buněk $7 D049109
- 650 _2
- $a citrátsynthasa $x metabolismus $7 D002950
- 650 _2
- $a mitochondriální DNA $x metabolismus $7 D004272
- 650 _2
- $a elektronový transportní řetězec $x metabolismus $7 D045222
- 650 _2
- $a energetický metabolismus $7 D004734
- 650 _2
- $a nádory plic $x patologie $x sekundární $7 D008175
- 650 _2
- $a melanom experimentální $x patologie $7 D008546
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední BALB C $7 D008807
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a myši inbrední NOD $7 D016688
- 650 _2
- $a myši SCID $7 D016513
- 650 _2
- $a mitochondrie $x genetika $x metabolismus $x ultrastruktura $7 D008928
- 650 _2
- $a NADH-dehydrogenasa $x genetika $x metabolismus $7 D009245
- 650 _2
- $a messenger RNA $x metabolismus $7 D012333
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a homologní transplantace $7 D014184
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Baty, James W $u Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.
- 700 1_
- $a Dong, Lan-Feng $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
- 700 1_
- $a Bezawork-Geleta, Ayenachew $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
- 700 1_
- $a Endaya, Berwini $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
- 700 1_
- $a Goodwin, Jacob $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
- 700 1_
- $a Bajzikova, Martina $u Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Kovarova, Jaromira $u Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Peterka, Martin $u Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Yan, Bing $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
- 700 1_
- $a Pesdar, Elham Alizadeh $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
- 700 1_
- $a Sobol, Margarita $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Filimonenko, Anatolyj $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Stuart, Shani $u Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
- 700 1_
- $a Vondrusova, Magdalena $u Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Kluckova, Katarina $u Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Sachaphibulkij, Karishma $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
- 700 1_
- $a Rohlena, Jakub $u Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Hozak, Pavel $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Truksa, Jaroslav $u Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- 700 1_
- $a Eccles, David $u Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.
- 700 1_
- $a Haupt, Larisa M $u Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
- 700 1_
- $a Griffiths, Lyn R $u Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
- 700 1_
- $a Neuzil, Jiri $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia; Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic. Electronic address: j.neuzil@griffith.edu.au.
- 700 1_
- $a Berridge, Michael V $u Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand. Electronic address: mberridge@malaghan.org.nz.
- 773 0_
- $w MED00008684 $t Cell metabolism $x 1932-7420 $g Roč. 21, č. 1 (2015), s. 81-94
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25565207 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151008130631 $b ABA008
- 999 __
- $a ok $b bmc $g 1092403 $s 914653
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 21 $c 1 $d 81-94 $i 1932-7420 $m Cell metabolism $n Cell Metab $x MED00008684
- LZP __
- $a Pubmed-20151005